DOI QR코드

DOI QR Code

Improvement in the Channel Capacity in Visible Light Emitting Diodes using Compressive Sensing

압축센싱기법을 이용한 가시광 무선링크 전송용량 증가기술 연구

  • Jung, Eui-Suk (Electronics and Telecommunications Research Institute) ;
  • Lee, Yong-Tae (Electronics and Telecommunications Research Institute) ;
  • Han, Sang-Kook (Department of Electrical and Electronic Engineering, Yonsei University)
  • 정의석 (한국 전자통신 연구원 모바일 미디어융합 연구실) ;
  • 이용태 (한국 전자통신 연구원 모바일 미디어융합 연구실) ;
  • 한상국 (연세대학교 전기전자공학부)
  • Received : 2014.06.11
  • Accepted : 2014.10.10
  • Published : 2014.10.31

Abstract

A new technique, which can increase the channel bandwidth in an optical wireless orthogonal frequency division multiplexing (OFDM) link based on a light emitting diode (LED), is proposed. The technique uses adaptive sampling to convert an OFDM signal to a sparse waveform. In compressive sensing (CS), a sparse signal that is sampled below the Nyquist/Shannon limit can be reconstructed successively with sufficient measurements. The data rate of the proposed CS-based visible light communication (VLC)-OFDM link increases from 30.72 Mb/s to 51.2 Mb/s showing an error vector magnitude (EVM) of 31 % at the quadrature phase shift keying (QPSK) symbol.

본 논문에서, 가시광 발광 다이오드를 데이터 전송용 광원으로 사용하는 광무선 전송 시스템의 채널 용량을 증가시키는 새로운 기법을 제안하였다. 압축센싱을 기반으로 하는 적응형 샘플링 기법과 L1최소화 기법을 이용하여 직교 주파수 분할 다중방식기반 직교 위상천이 변조 (OFDM-QPSK: orthogonal frequency division multiplexed-qudarature phase shift keying) 데이터를 압축무선 전송한후, 수신단에서 복원하였다. 제안된 기법을 실험적으로 검증하기 위해서 소규모 링크를 이용하여 전송실험한 결과, OFDM-QPSK 데이터 전송률이 30.72Mb/s에서 51.2Mb/s로 증가함을 확인하였다. 이때의 오류벡터크기(EVM: error vector magnitude)값은 31%이었고, 에러정정 코드를 적용할 경우, 완벽하게 복원 가능함을 확인하였다.

Keywords

References

  1. A. Jovicic, J. Li, and T. Richardson, "Visible light communication: opportunities, challenges and the path to market," IEEE Commun. Mag., 51, pp. 26-32 2013. DOI: http://dx.doi.org/10.1109/MCOM.2013.6685754
  2. J. Gruber, S. C. J. Lee, K.-D. Langer, T. Koonen, and J. W. Walewski, "Wireless high-speed data transmission with phosphorescent white-light LEDs," in Proceedings of 33th European Conference and Exhibition on Optical Communication, pp. 1-2, 2007.
  3. H. L. Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, "High-speed visible light communications using multiple resonant equalization," IEEE Photon. Technol. Lett. vol. 20, no. 14, pp. 1243-1245, 2008. DOI: http://dx.doi.org/10.1109/LPT.2008.926030
  4. H. L. Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, "100-Mb/s NRZ visible light communications using a postequalized white LED," IEEE Photon. Technol. Lett. vol. 21, no. 15, pp. 1063-1065, 2009. DOI: http://dx.doi.org/10.1109/LPT.2009.2022413
  5. C. Kottke, J. Hilt, K. Habel, J. Vucic, and K.-D. Langer, "1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary," in Proceedings of 38th European Conference and Exhibition on Optical Communication, paper We.3.B.4., 2002.
  6. J. Vucic, C. Kottke, S. Nerreter, K.-D. Langer, and J. W. Walewski, "513 Mbit/s visible light communications link based on DMT-modulation of a white LED," J. Lightw. Technol. vol. 28, no. 24, pp. 3512-3518, 2010.
  7. D.L. Donoho, "Compressed Sensing," IEEE Trans. on Information Theory vol. 52, pp. 1289-1306, 2006. DOI: http://dx.doi.org/10.1109/TIT.2006.871582
  8. D. L. Donoho and M. Elad, "Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization," Proc. Nat. Acad. Sci., vol. 100, pp. 2197-2202, 2003. DOI: http://dx.doi.org/10.1073/pnas.0437847100
  9. E. Candes and T. Tao, "Decoding by linear programming," IEEE Trans. Info. Theory, vol. 51, pp. 4203-4215, 2005. DOI: http://dx.doi.org/10.1109/TIT.2005.858979