DOI QR코드

DOI QR Code

광학 현미경을 이용한 산화 그래핀 이미지 분석 조건에 관한 연구

A Study on Image Analysis of Graphene Oxide Using Optical Microscopy

  • Lee, Yu-Jin (Korea Institute of Materials Science, Composites Research Center) ;
  • Kim, Na-Ri (Korea Institute of Materials Science, Composites Research Center) ;
  • Yoon, Sang-Su (Korea Institute of Materials Science, Composites Research Center) ;
  • Oh, Youngsuk (Korea Institute of Materials Science, Composites Research Center) ;
  • Lee, Jea Uk (Korea Institute of Materials Science, Composites Research Center) ;
  • Lee, Wonoh (Korea Institute of Materials Science, Composites Research Center)
  • 투고 : 2014.07.07
  • 심사 : 2014.10.23
  • 발행 : 2014.10.31

초록

광학 현미경 관찰을 통해 산화 그래핀의 형상, 크기 및 두께를 쉽게 파악할 수 있는 광학 관찰을 위한 최적 조건을 확보하고자 하였다. 본 연구에서는 $SiO_2$ 절연막이 300 nm 두께로 도포된 실리콘 기판 위의 산화 그래핀을 하이드라진 증기 환원을 통하여 본래의 모폴로지를 유지한 채 환원된 산화 그래핀의 이미지의 선명도를 증가시켰고, 녹색 필터를 사용한 관찰을 통해 이미지의 대비값을 보다 증대시켰다. 추가적으로 얻어진 광학 이미지를 RGB 채널별로 분리하는 방법을 제안하고 이를 통해 이미지를 분석하였다. 그 결과 하이드라진 증기 환원 처리 및 녹색 파장에서의 광원 하에서 고대비의 이미지 확보가 가능하였으며, 더불어 광학 이미지의 RGB 채널 분리만으로도 선명한 그래핀 이미지를 얻을 수 있음을 알아내었다.

Experimental considerations have been performed to obtain the clear optical microscopic images of graphene oxide which are useful to probe its quality and morphological information such as a shape, a size, and a thickness. In this study, we investigated the contrast enhancement of the optical images of graphene oxide after hydrazine vapor reduction on a Si substrate coated with a 300 nm-thick $SiO_2$ dielectric layer. Also, a green-filtered light source gave higher contrast images comparing to optical images under standard white light. Furthermore, it was found that a image channel separation technique can be an alternative to simply identify the morphological information of graphene oxide, where red, green, and blue color values are separated at each pixels of the optical image. The approaches performed in this study can be helpful to set up a simple and easy protocol for the morphological identification of graphene oxide using a conventional optical microscope instead of a scanning electron microscopy or an atomic force microscopy.

키워드

참고문헌

  1. Park, S., "History of Graphene Oxide and Future Direction," KIC News, Vol. 16, No. 3, 2013.
  2. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., and Geim, A.K., "The Electronic Properties of Graphene," Reviews of Modern Phyics, Vol. 81, 2009, pp. 109-162. https://doi.org/10.1103/RevModPhys.81.109
  3. Beenakker, C.W.J., "Andreev Reflection and Klein Tunneling in Graphene," Reviews of Modern Phyics, Vol. 80, 2008, pp. 1337-1354. https://doi.org/10.1103/RevModPhys.80.1337
  4. Park, S., and Ruoff, R.S., "Chemical Methods for the Production of Graphenes," Nature Nanotechnology, Vol. 4, 2010, pp. 217-225.
  5. Dreyer, D.R., Park, S., Bielawski, C.W., and Ruoff, R.S., "The Chemistry of Graphene Oxide," Chemical Society Reviews, Vol. 39, 2010, pp. 228-240. https://doi.org/10.1039/B917103G
  6. Jeong, S.Y., Kim, S.H., Han, J.T., Jeong, H.J., Yang, S., and Lee, G., "High-performance Transparent Conductive Films Using Rheologically Derived Reduced Graphene Oxide," ACS Nano, Vol. 5, 2011, pp. 870-878. https://doi.org/10.1021/nn102017f
  7. Dinh, L.D., and Gang, H.H., "Probing Graphene Grain Boundaries with Optical Microscopy," Nature, Vol. 490, 2012, pp. 235-240. https://doi.org/10.1038/nature11562
  8. Zhao, J., Pei, S., Ren, W., Gao, L., and Cheng, H.M., "Efficient Preparation of Large-area Graphene Oxide Sheets for Transparent Conductive Films," ACS Nano, Vol. 4, 2010, pp. 5245-5252. https://doi.org/10.1021/nn1015506
  9. Jung, I., Ra, Y.J., Son, J.Y., Kang, Y.T., and Rhee, K.Y., "Reconstruction of Optical Images of Graphene-based Materials Coated on Dielectric Substrates," Optical Engineering, Vol. 52, 2013, pp. 023601. https://doi.org/10.1117/1.OE.52.2.023601
  10. Wang, Y.Y., Gao, R.X., Ni, Z.H., Hui, H., Guo, S.P., Yang, H.P., Cong, C.X., and Ting, Y., "Thickness Identification of Twodimensional Materials by Optical Imaging," Nanotechnology, Vol. 23, 2012, pp. 495713. https://doi.org/10.1088/0957-4484/23/49/495713
  11. Blake, P., Hill, E.W., Castro Neto, A.H., Novoselov, K.S., Jiang, D., Yang, R., Booth, T.J., and Geim, A.K., "Making Graphene Visible," Applied Physics Letters, Vol. 91, 2007, pp. 063124. https://doi.org/10.1063/1.2768624
  12. Hummers, W.S., and Offeman, R.E., "Preparation of Graphitic Oxide," Journal of the American Chemical Society, Vol. 80, 1958, pp. 1339. https://doi.org/10.1021/ja01539a017
  13. Stankovich, S., Piner, R.D., Chen, X.Q., Wu, N.Q., Nguyen, S.B.T., and Ruoff, R.S., "Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly (sodium 4-styrene sulfonate)," Journal of Materials Chemistry, Vol. 16, 2006, pp. 155-158. https://doi.org/10.1039/b512799h
  14. Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., and Chen, Y., "Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors," ACS Nano, Vol. 2, 2008, pp. 463-470. https://doi.org/10.1021/nn700375n
  15. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Sleasarev, A., Alemany, L.B., Lu, W., and Tour, J.M., "Improved Synthesis of Graphene Oxide," ACS Nano, Vol. 4, 2010, pp. 4806-4814. https://doi.org/10.1021/nn1006368

피인용 문헌

  1. Effect of graphene oxide on mechanical characteristics of polyurethane foam vol.40, pp.6, 2016, https://doi.org/10.5916/jkosme.2016.40.6.493