DOI QR코드

DOI QR Code

반응표면분석에 의한 노랑느타리버섯 추출물의 추출조건 최적화

Optimization of Extraction Conditions of Pleurotus cornucopiae by Response Surface Methodology

  • 투고 : 2014.06.25
  • 심사 : 2014.07.16
  • 발행 : 2014.10.31

초록

노랑느타리버섯의 항산화 활성을 측정하여 효율적 추출조건을 예측하기 위해 마이크로웨이브 에너지, 에탄올 농도, 추출시간의 요인변수를 중심합성법에 따라 설정하여 반응 표면분석을 통해 최적화 조건을 설정하였다. 노랑느타리버섯 추출물의 수율, 전자공여작용, SOD 유사 활성, 총 폴리페놀 함량에 대한 반응표면의 회귀식 $R^2$ 값이 각각 0.91, 0.87, 0.86 및 0.87로 분석되었고, 수율은 P<0.01, 항산화 활성이 P<0.05에서 유의적 수준을 나타냈다. 노랑느타리버섯은 요인변수에 따라 수율, 전자공여작용, 총 폴리페놀 함량의 경우 마이크로웨이브 에너지의 영향을 가장 많이 받았고, SOD 유사 활성의 경우 에탄올 농도에 따른 유의적 차이를 보였다. 추출물의 각 특성을 모두 만족시키는 최적의 추출조건의 범위는 superimposing 하여 마이크로웨이브 에너지 71.48~92.84 watts, 에탄올 농도 55.01~71.66%, 추출시간 3~9분으로 예측되었다.

Response surface methodology (RSM) was used to optimize extraction conditions of Pleurotus cornocopiae. Coefficients of determination (R2) for dependent variables ranged from 0.86 at 0.91. Maximum extraction yield was 40.81% under the following conditions: microwave power of 60.08 watts, ethanolic concentration of 12.33%, and extraction time of 6.86 min. Maximum extraction electron donating ability was 35.72% at 44.13 watts, 19.30%, and 4.21 min. Maximum extraction superoxide dismutase (SOD)-like activity was 34.87% at 114.01 watts, 65.88%, and 1.56 min. Maximum extraction total polyphenol content was 31.77 mg/g at 50.52 watts, 23.00% and 2.90 min. Based on the superimposition of four dimensional RSM with respect to extraction yield, electron donating ability, SOD-like activity, and total polyphenol content obtained under various extraction conditions, the optimum ranges of extraction conditions were as follows: microwave power of 71.48~92.84 watts, ethanol concentration of 55.01~71.66%, and extraction time of 3~9 min.

키워드

참고문헌

  1. Lim SH, Lee YH, Kang HW. 2013. Optimal extraction and characteristics of lignocellulytic enzymes from various spent mushroom composts. Korean J Mycol 41: 160-166. https://doi.org/10.4489/KJM.2013.41.3.160
  2. Jang IJ. 2006. Home cultivation system of the new functional selenium-enriched Pleurotus cornucopiae and implementation of mushroom WBI data. PhD Dissertation. Chonnam National University, Gwangju, Korea. p 1.
  3. Jo EK. 2012. Physiological and antioxidant activities of subcritical water extracts from gold oyster mushroom (Pleurotus cornucopiae Rolland var. citrinopileatus). MS Thesis. Kyungnam University, Changwon, Korea. p 38-39.
  4. Yoo BH. 2011. Production of $\beta$-glucan using mixed culture of mushroom mycelium and Trichoderma koningii. MS Thesis. Inje University, Gimhae, Korea. p 4-5.
  5. Lee YH, You CH, Cha DY, Yoo YB, Min KH. 1986. Protoplast regeneration and reversion in Pleurotus cornucopiae. Korean J Mycol 14: 215-223.
  6. Um S, Jin G, Park KW, Yu Y, Park KM. 2010. Physiological activity and nutritional composition of Pleurotus species. Korean J Food Sci Technol 42: 90-96.
  7. Choi HY, Ha KS, Jo SH, Ka EH, Chang HB, Kwon YI. 2012. Antioxidant and anti-hyperglycemic effects of a Sanghwang mushroom (Phellinus linteusau) water extract. Korean J Food & Nutr 25: 239-245. https://doi.org/10.9799/ksfan.2012.25.2.239
  8. Hong SS, Jung EK, Kim AJ. 2013. Quality characteristics of yanggaeng supplemented with Sanghwang mushroom (Phellinus linteusau) mycelia. J Korean Diet Assoc 19: 253-264. https://doi.org/10.14373/JKDA.2013.19.3.253
  9. Baek SJ, Kim YS, Yong HM, Chae JB, Lee SA, Bae WC, Park DW, Kim DY, Lee JW, Park SK. 2002. Antimetastatic effect of proteoglycan lsolated from the mycelium of Ganoderma lucidum IY009 in vitro and in vivo. Yakhak Hoegi 46: 11-17.
  10. Chung HC, Lee JT, Kwon OJ. 2004. Bread properties utilizing extracts of Ganoderma lucidum (GL). J Korean Soc Food Sci Nutr 33: 1201-1205. https://doi.org/10.3746/jkfn.2004.33.7.1201
  11. Gontard N, Guilbert S, Cuq JL. 1992. Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. J Food Sci 57: 190-196. https://doi.org/10.1111/j.1365-2621.1992.tb05453.x
  12. Cochran WG, Cox GM. 1957. Experimental design. 2nd ed. John Wiley & Sons Inc., New York, NY, USA. p 335-375.
  13. Box GEP, Hunter JS. 1957. Multi-factor experimental design for exploring response surfaces. Annal Math Stat 28: 195-242. https://doi.org/10.1214/aoms/1177707047
  14. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  15. Marklund S, Marklund G. 1974. Involvement of superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  16. Folin O, Denis W. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-249.
  17. Kang BH, Lee JM, Kim YK. 2010. Optimization of hot water extraction conditions for Tricholoma matsutake by response surface methodology. J Korean Soc Food Sci Nutr 39: 1206-1212. https://doi.org/10.3746/jkfn.2010.39.8.1206
  18. Lee KA, Jung JE, Choi YH. 2007. Optimization of microwave- assisted extraction process of Hericium erinaceus. Food Eng Prog 11: 195-202.
  19. Kim HK, Choi MG, Kim MO, Kim KH. 2003. Optimization of extraction conditions for Lyophyllum ulmarium by response surface methodology. J Korean Soc Food Sci Nutr 32: 574-580. https://doi.org/10.3746/jkfn.2003.32.4.574
  20. Kim DY, Teng H, Choi YH. 2012. Optimization of ultrasonic- assisted extraction process for Inonotus obliquus using response surface methodology. Curr Res Agric Life Sci 30: 68-75.
  21. Choi MA, Park NY, Woo SM, Jeong YJ. 2003. Optimization of extraction conditions from Hericium erinaceus by response surface methodology. Korean J Food Sci Technol 35: 777-782.

피인용 문헌

  1. Optimization of the Extraction of Bioactive Compounds from Chaga Mushroom (Inonotus obliquus) by the Response Surface Methodology vol.47, pp.2, 2015, https://doi.org/10.9721/KJFST.2015.47.2.233