DOI QR코드

DOI QR Code

탄소성 균열개시조건에 대한 원주방향 관통균열 배관의 부분안전계수 계산

Estimates of Partial Safety Factors of Circumferential Through-Wall Cracked Pipes Based on Elastic-Plastic Crack Initiation Criterion

  • 이재빈 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 허남수 (서울과학기술대학교 기계시스템디자인공학과)
  • Lee, Jae-Bin (Dept. of Mechanical System Design Engineering, Seoul Nat'l Univ. of Science and Technology) ;
  • Huh, Nam-Su (Dept. of Mechanical System Design Engineering, Seoul Nat'l Univ. of Science and Technology)
  • 투고 : 2014.06.17
  • 심사 : 2014.08.17
  • 발행 : 2014.11.01

초록

최근 제4세대 원자로의 기기 최적설계를 위해 목표파손확률 기반 설계기법에 대한 연구가 활발히 진행되고 있다. 시스템기반코드(System-Based Code, SBC)가 대표적인 예로 설계 혹은 평가 결과는 부분안전계수(Partial Safety Factor, PSF)의 형태로 도출된다. 따라서 부분안전계수는 가동 기간 중 목표파손확률 기반 설계 및 평가를 위한 핵심 요소 가운데 하나이다. 본 연구에서는 특정 목표파손확률 하에서 원주방향 관통균열이 존재하는 배관의 탄소성 균열개시 조건에 대한 부분안전계수 계산 기법을 정립하고 각 평가 인자가 균열개시에 미치는 중요도를 정량적으로 평가하였다. 균열 배관의 J-적분은 GE/EPRI법과 참조응력법으로 계산하였으며, 부분안전계수는 일차 및 이차신뢰도지수법으로 계산하였다. 또한 재료물성치의 통계적 분포 특성이 미치는 영향도 함께 평가하였다.

Efforts are presently underway for developing an optimal design methodology for GEN-IV nuclear reactors based on target failure probabilities. A typical example is the system-based code, in which the results are represented in the form of partial safety factors (PSFs). Thus, a PSF is one of the crucial elements in either component design or integrity assessment based on target failure probabilities during the operation period. In the present study, a procedure for calculating the PSF of a circumferential through-wall cracked pipe based on the elastic-plastic crack initiation criterion is established, in which the importance of each input variable is assessed. Elastic-plastic J-integrals are calculated using the GE/EPRI and reference stress methods, and the PSF values are calculated using both first- and second-order reliability methods. Moreover, the effect of statistical distributions of assessment variables on the PSF is also evaluated.

키워드

참고문헌

  1. Watanabe, D., Chuman, Y., Asayama, T., Takaya, S., Machida, H. and Kamishima, Y., 2013, "Development of Limit State Design for Fast Reactor by System Based Code," ASME Pressure Vessels and Piping Conference, PVP2013-97154.
  2. Sundararajan, C., 1995, Probabilistic Structural Mechnics Handbook, Champman & Hall, New York, pp. 1-31.
  3. Nikolaidis, E., Ghiocel, D.M. and Singhal, S., 2005, Engineering Design Reliability Handbook, CRC-Press, New York, Chapter 14.
  4. Kumar, V., German, M.D. and Shih, C.F., 1981, "An Engineering Approach for Elastic-Plastic Fracture Analysis," EPRI Report NP-1931.
  5. British Energy Generation Ltd., 2001, Assessment of the Integrity of Structures Containing Defects, UK, R6, Revision 4, Sec. 1.6.
  6. Rahman, S. and Kim, J.S., 2001, "Probabilistic Fracture Mechanics for Nonlinear Structures," International Journal of Pressure Vessels and Piping, Vol. 78, pp. 261-269. https://doi.org/10.1016/S0308-0161(01)00006-0
  7. Lee, K.H., 2002, "Development of Failure Probability Estimation for Circumferential Cracked Pipes based on Reliability Index," Master Thesis Sungkyunkwan University.
  8. Rackwitz, R. and Fiessler, B., 1976, "Note on Discrete Safety Checking When Using Non-normal Stochastic Models for Basic Variables," Loads Project Working Session, MIT, Cambridge.
  9. Yoo, Y.S., Huh, N.S., Choi, S., Kim, T.W. and Kim, J.I., 2010, "Collapse Pressure Estimates and the Application of a Partial Safety Factor to Cylinders Subjected to External Pressure," Nuclear Engineering and Technology, Vol. 42, No. 4, pp. 450-459. https://doi.org/10.5516/NET.2010.42.4.450