DOI QR코드

DOI QR Code

Neural Transcription Factors: from Embryos to Neural Stem Cells

  • Lee, Hyun-Kyung (ABRC, School of Life Sciences, BK21 Plus KNU Creative BioReserach Group, Kyungpook National University) ;
  • Lee, Hyun-Shik (ABRC, School of Life Sciences, BK21 Plus KNU Creative BioReserach Group, Kyungpook National University) ;
  • Moody, Sally A. (Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences)
  • 투고 : 2014.08.07
  • 심사 : 2014.08.10
  • 발행 : 2014.10.31

초록

The early steps of neural development in the vertebrate embryo are regulated by sets of transcription factors that control the induction of proliferative, pluripotent neural precursors, the expansion of neural plate stem cells, and their transition to differentiating neural progenitors. These early events are critical for producing a pool of multipotent cells capable of giving rise to the multitude of neurons and glia that form the central nervous system. In this review we summarize findings from gain- and loss-of-function studies in embryos that detail the gene regulatory network responsible for these early events. We discuss whether this information is likely to be similar in mammalian embryonic and induced pluripotent stem cells that are cultured according to protocols designed to produce neurons. The similarities and differences between the embryo and stem cells may provide important guidance to stem cell protocols designed to create immature neural cells for therapeutic uses.

키워드

참고문헌

  1. Ahmed, S., Gan, H.T., Lam, C.S., Poonepalli, A., Ramasamy, S., Tay, Y., Tham, M., and Yu, Y.H. (2009). Transcription factors and neural stem cell self-renewal, growth and differentiation. Cell Adh. Migr. 3, 412-424. https://doi.org/10.4161/cam.3.4.8803
  2. Aruga, J., Tohmonda, T., Homma, S., and Mikoshiba, K. (2002). Zic1 promotes the expansion of dorsal neural progenitors in spinal cord by inhibiting neuronal differentiation. Dev. Biol. 244, 329-341. https://doi.org/10.1006/dbio.2002.0598
  3. Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L., Vivian, N., and Lovell-Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126-140. https://doi.org/10.1101/gad.224503
  4. Bani-Yaghoub, M., Tremblay, R.G., Lei, J.X., Zhang, D., Zurakowski, B., Sandhu, J.K., Smith, B., Ribecco-Lutkiewicz, M., Kennedy, J., Walker, P.R., et al. (2006) .Role of Sox2 in the development of the mouse neocortex. Dev. Biol. 295, 52-66. https://doi.org/10.1016/j.ydbio.2006.03.007
  5. Bellefroid, E.J., Kobbe, A., Gruss, P., Pieler, T., Gurdon, J.B., and Papalopulu, N. (1998). Xiro3 encodes a Xenopus homolog of the Drosophila Iroquois genes and functions in neural specification. EMBO J. 17, 191-203. https://doi.org/10.1093/emboj/17.1.191
  6. Bergsland, M., Werme, M., Malewicz, M., Perlmann, T., and Muhr, J. (2006). The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes Dev. 20, 3475-3486. https://doi.org/10.1101/gad.403406
  7. Bergsland, M., Ramskold, D., Zaouter, C., Klum, S., Sandberg, R., and Muhr, J. (2011). Sequentially acting Sox transcription factors in neural lineage development. Genes Dev. 25, 2453-2464. https://doi.org/10.1101/gad.176008.111
  8. Bhattaram, P., Penzo-Mendez, A., Sock, E., Colmenares, C., Kaneko, K.J., Vassilev, A., Depamphilis, M.L., Wegner, M., and Lefebvre, V. (2010). Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors. Nat. Commun. 1, 9.
  9. Brault, V., Moore, R., Kutsch, S., Ishibashi, M., Rowitch, D.H., McMahon, A.P., Sommer, L., Boussadia, O., and Kemler, R. (2001). Inactivation of the beta-catenin gene by Wnt1-Cremediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128, 1253-1264.
  10. Brewster, R., Lee, J., and Ruiz i Altaba, A. (1998). Gli/Zic factors pattern the neural plate by defining domains of cell differentiation. Nature 393, 579-583. https://doi.org/10.1038/31242
  11. Bylund, M., Andersson, E., Novitch, B.G., and Muhr, J. (2003). Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat. Neurosci. 6, 1162-1168. https://doi.org/10.1038/nn1131
  12. Chaddah, R., Arntfield, M., Runciman, S., Clarke, L., and van der Kooy, D. (2012). Clonal neural stem cells from human embryonic stem cell colonies. J. Neurosci. 32, 7771-7781. https://doi.org/10.1523/JNEUROSCI.3286-11.2012
  13. Chan, T.M., Chen, J.Y., Ho, L.I., Lin, H.P., Hsueh, K.W., Liu, D.D., Chen, Y.H., Hsieh, A.C., Tsai, N.M., Hueng, D.Y., et al. (2014). ADSC therapy in neurodegenerative disorders. Cell Transplant. 23, 549-557. https://doi.org/10.3727/096368914X678445
  14. Chng, Z., Teo, A., Pedersen, R.A., and Vallier, L. (2010). SIP1 mediates cell-fate decisions between neuroectoderm and mesendoderm in human pluripotent stem cells. Cell Stem Cell 6, 59-70. https://doi.org/10.1016/j.stem.2009.11.015
  15. Collignon, J., Sockanathan, S., Hacker, A., Cohen-Tannoudji, M., Norris, D., Rastan, S., Stevanovic, M., Goodfellow, P.N., and Lovell-Badge, R. (1996). A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development 122, 509-520.
  16. Dahmane, N., Sanchez, P., Gitton, Y., Palma, V., Sun, T., Beyna, M., Weiner, H., and Ruiz i Altaba, A. (2001). The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development 128, 5201-5212.
  17. de la Calle-Mustienes, E., Glavic, A., Modolell, J., and Gomez-Skarmeta, J.L. (2002). Xiro homeoproteins coordinate cell cycle exit and primary neuron formation by upregulating neuronal-fate repressors and downregulating the cell-cycle inhibitor XGadd45-gamma. Mech. Dev. 119, 69-80. https://doi.org/10.1016/S0925-4773(02)00296-4
  18. De Robertis, E.M., and Kuroda, H. (2004). Dorsal-ventral patterning and neural induction in Xenopus embryos. Ann. Rev. Cell Dev. Biol. 20, 285-308. https://doi.org/10.1146/annurev.cellbio.20.011403.154124
  19. Devine, M.J., Ryten, M., Vodicka, P., Thomson, A.J., Burdon, T., Houlden, H., Cavaleri, F., Nagano, M., Drummond, N.J., Taanman, J.W., et al. (2011). Parkinson's disease induced pluripotent stem cells with triplication of the alpha-synuclein locus. Nat. Commun. 2, 440. https://doi.org/10.1038/ncomms1453
  20. Eisaki, A., Kuroda, H., Fukui, A., and Asashima, M. (2000). XSIP1, a member of two-handed zinc finger proteins, induced anterior neural markers in Xenopus laevis animal cap. Biochem. Biophys. Res. Commun. 271, 151-157. https://doi.org/10.1006/bbrc.2000.2545
  21. Ellis, P., Fagan, B.M., Magness, S.T., Hutton, S., Taranova, O., Hayashi, S., McMahon, A., Rao, M., and Pevny, L. (2004). SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev. Neurosci. 26, 148-165. https://doi.org/10.1159/000082134
  22. Florio, M., and Huttner, W.B. (2014). Neural progenitors, neurogenesis and the evolution of the neocortex. Development 141, 2182-2194. https://doi.org/10.1242/dev.090571
  23. Fuccillo, M., Joyner, A.L., and Fishell, G. (2006). Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. Nat. Rev. Neurosci. 7, 772-783. https://doi.org/10.1038/nrn1990
  24. Fujita, S. (2003). The discovery of the matrix cell, the identification of the multipotent neural stem cell and the development of the central nervous system. Cell Struct. Funct. 28, 205-228. https://doi.org/10.1247/csf.28.205
  25. Gaiano, N., Nye, J.S., and Fishell, G. (2000). Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26, 395-404. https://doi.org/10.1016/S0896-6273(00)81172-1
  26. Glavic, A., Gomez-Skarmeta, J.L., and Mayor, R. (2001). Xiro-1 controls mesoderm patterning by repressing bmp-4 expression in the Spemann organizer. Dev. Dyn. 222, 368-376. https://doi.org/10.1002/dvdy.1189
  27. Gomez-Skarmeta, J.L., Diez del Corral, R., de la Calle-Mustienes, E., Ferre-Marco, D., and Modolell, J. (1996). Araucan and caupolican, two members of the novel iroquois complex, encode homeoproteins that control proneural and vein-forming genes. Cell 85, 95-105. https://doi.org/10.1016/S0092-8674(00)81085-5
  28. Gomez-Skarmeta, J.L., Glavic, A., de la Calle-Mustienes, E., Modolell, J., and Mayor, R. (1998). Xiro, a Xenopus homolog of the Drosophila Iroquois complex genes, controls development at the neural plate. EMBO J. 17, 181-190. https://doi.org/10.1093/emboj/17.1.181
  29. Gomez-Skarmeta, J., de La Calle-Mustienes, E., and Modolell, J. (2001). The Wnt-activated Xiro1 gene encodes a repressor that is essential for neural development and downregulates Bmp4. Development 128, 551-560.
  30. Graham, V., Khudyakov, J., Ellis, P., and Pevny, L. (2003). SOX2 functions to maintain neural progenitor identity. Neuron 39, 749-765. https://doi.org/10.1016/S0896-6273(03)00497-5
  31. Greber, B., Coulon, P., Zhang, M., Moritz, S., Frank, S., Muller-Molina, A.J., Arauzo-Bravo, M.J., Han, D.W., Pape, H.C., and Scholer, H.R. (2011). FGF signalling inhibits neural induction in human embryonic stem cells. EMBO J. 30, 4874-4884. https://doi.org/10.1038/emboj.2011.407
  32. Hatakeyama, J., Bessho, Y., Katoh, K., Ookawara, S., Fujioka, M., Guillemot, F., and Kageyama, R. (2004). Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131, 5539-5550. https://doi.org/10.1242/dev.01436
  33. Hyodo-Miura, J., Urushiyama, S., Nagai, S., Nishita, M., Ueno, N., and Shibuya, H. (2002). Involvement of NLK and Sox11 in neural induction in Xenopus development. Genes Cells 7, 487-496. https://doi.org/10.1046/j.1365-2443.2002.00536.x
  34. Imayoshi, I., and Kageyama, R. (2014). bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells. Neuron 82, 9-23. https://doi.org/10.1016/j.neuron.2014.03.018
  35. Ishibashi, M., Ang, S.L., Shiota, K., Nakanishi, S., Kageyama, R., and Guillemot, F. (1995). Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev. 9, 3136-3148. https://doi.org/10.1101/gad.9.24.3136
  36. Itoh, K., and Sokol, S.Y. (2007). Early development of epidermis and neural tissue. In Principles of Developmental Genetics. S.A.Moody,ed., (New York, USA: Elsevier), pp. 241-257.
  37. Kalani, M.Y., Cheshier, S.H., Cord, B.J., Bababeygy, S.R., Vogel, H., Weissman, I.L., Palmer, T.D., and Nusse, R. (2008). Wntmediated self-renewal of neural stem/progenitor cells. Proc. Natl. Acad. Sci. USA 105, 16970-16975. https://doi.org/10.1073/pnas.0808616105
  38. Kishi, M., Mizuseki, K., Sasai, N., Yamazaki, H., Shiota, K., Nakanishi, S., and Sasai, Y. (2000). Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm. Development 127, 791-800.
  39. Klein, S.L., Neilson, K.M., Orban, J., Yaklichkin, S., Hoffbauer, J., Mood, K., Daar, I.O., and Moody, S.A. (2013). Conserved structural domains in FoxD4L1, a neural forkhead box transcription factor, are required to repress or activate target genes. PLoS One 8, e61845. https://doi.org/10.1371/journal.pone.0061845
  40. Kroll, K.L., Salic, A.N., Evans, L.M., and Kirschner, M.W. (1998). Geminin, a neuralizing molecule that demarcates the future neural plate at the onset of gastrulation. Development 125, 3247-3258.
  41. Kuo, J.S., Patel, M., Gamse, J., Merzdorf, C., Liu, X., Apekin, V., and Sive, H. (1998). Opl: a zinc finger protein that regulates neural determination and patterning in Xenopus. Development 125, 2867-2882.
  42. Levine, M., and Davidson, E.H. (2005). Gene regulatory networks for development. Proc. Natl. Acad. Sci. USA 102, 4936-4942. https://doi.org/10.1073/pnas.0408031102
  43. Levine, A.J., and Brivanlou, A.H. (2007). Proposal of a model of mammalian neural induction. Dev. Biol. 308, 247-256. https://doi.org/10.1016/j.ydbio.2007.05.036
  44. Li, M., Pevny, L., Lovell-Badge, R., and Smith, A. (1998). Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr. Biol. 8, 971-974. https://doi.org/10.1016/S0960-9822(98)70399-9
  45. Lim, J.W., Hummert, P., Mills, J.C., and Kroll, K.L. (2011). Geminin cooperates with Polycomb to restrain multi-lineage commitment in the early embryo. Development 138, 33-44. https://doi.org/10.1242/dev.059824
  46. Miyagi, S., Masui, S., Niwa, H., Saito, T., Shimazaki, T., Okano, H., Nishimoto, M., Muramatsu, M., Iwama, A., and Okuda, A. (2008). Consequence of the loss of Sox2 in the developing brain of the mouse. FEBS Lett. 582, 2811-2815. https://doi.org/10.1016/j.febslet.2008.07.011
  47. Mizuseki, K., Kishi, M., Matsui, M., Nakanishi, S., and Sasai, Y. (1998a). Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction. Development 125, 579-587.
  48. Mizuseki, K., Kishi, M., Shiota, K., Nakanishi, S., and Sasai, Y. (1998b). SoxD: an essential mediator of induction of anterior neural tissues in Xenopus embryos. Neuron 21, 77-85. https://doi.org/10.1016/S0896-6273(00)80516-4
  49. Mizutani, K., Yoon, K., Dang, L., Tokunaga, A., and Gaiano, N. (2007). Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449, 351-355. https://doi.org/10.1038/nature06090
  50. Molofsky, A.V., He, S., Bydon, M., Morrison, S.J., and Pardal, R. (2005). Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev. 19, 1432-1437. https://doi.org/10.1101/gad.1299505
  51. Moody, S.A., Klein, S.L., Karpinski, B.A., Maynard, T.M., and Lamantia, A.S. (2013). On becoming neural: what the embryo can tell us about differentiating neural stem cells. Am. J. Stem Cells 2, 74-94.
  52. Nakata, K., Nagai, T., Aruga, J., and Mikoshiba, K. (1997). Xenopus Zic3, a primary regulator both in neural and neural crest development. Proc. Natl. Acad. Sci. USA 94, 11980-11985. https://doi.org/10.1073/pnas.94.22.11980
  53. Nakata, K., Nagai, T., Aruga, J., and Mikoshiba, K. (1998). Xenopus Zic family and its role in neural and neural crest development. Mech. Dev. 75, 43-51. https://doi.org/10.1016/S0925-4773(98)00073-2
  54. Neely, M.D., Litt, M.J., Tidball, A.M., Li, G.G., Aboud, A.A., Hopkins, C.R., Chamberlin, R., Hong, C.C., Ess, K.C., and Bowman, A.B. (2012). DMH1, a highly selective small molecule BMP inhibitor promotes neurogenesis of hiPSCs: comparison of PAX6 and SOX1 expression during neural induction. ACS Chem. Neurosci. 3, 482-491. https://doi.org/10.1021/cn300029t
  55. Neilson, K.M., Klein, S.L., Mhaske, P., Mood, K., Daar, I.O., and Moody, S.A. (2012). Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate. Dev. Biol. 365, 363-375. https://doi.org/10.1016/j.ydbio.2012.03.004
  56. Nitta, K.R., Tanegashima, K., Takahashi, S., and Asashima, M. (2004). XSIP1 is essential for early neural gene expression and neural differentiation by suppression of BMP signaling. Dev. Biol. 275, 258-267. https://doi.org/10.1016/j.ydbio.2004.08.010
  57. Nitta, K.R., Takahashi, S., Haramoto, Y., Fukuda, M., Tanegashima, K., Onuma, Y., and Asashima, M. (2007). The N-terminus zinc finger domain of Xenopus SIP1 is important for neural induction, but not for suppression of Xbra expression. Int. J. Dev. Biol. 51, 321-325. https://doi.org/10.1387/ijdb.062252kn
  58. Ohtsuka, T., Sakamoto, M., Guillemot, F., and Kageyama, R. (2001). Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J. Biol. Chem. 276, 30467-30474. https://doi.org/10.1074/jbc.M102420200
  59. Palma, V., and Ruiz i Altaba, A. (2004). Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development 131, 337-345.
  60. Penzel, R., Oschwald, R., Chen, Y., Tacke, L., and Grunz, H. (1997). Characterization and early embryonic expression of a neural specific transcription factor xSOX3 in Xenopus laevisInt. J. Dev. Biol. 41, 667-677.
  61. Rogers, C.D., Archer, T.C., Cunningham, D.D., Grammer, T.C., and Casey, E.M. (2008). Sox3 expression is maintained by FGF signaling and restricted to the neural plate by Vent proteins in the Xenopus embryo. Dev. Biol. 313, 307-319. https://doi.org/10.1016/j.ydbio.2007.10.023
  62. Rogers, C.D., Moody, S.A., and Casey, E.S. (2009a). Neural induction and factors that stabilize a neural fate.Birth Defects Res. C Embryo Today 87, 249-262.
  63. Rogers, C.D., Harafuji, N., Archer, T., Cunningham, D.D., and Casey, E.S. (2009b). Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives. Mech. Dev. 126, 42-55. https://doi.org/10.1016/j.mod.2008.10.005
  64. Ross, C.A., and Akimov, S.S. (2014). Human-induced pluripotent stem cells: potential for neurodegenerative diseases. Hum. Mol. Genet.[Epub ahead of print].
  65. Sasai, Y. (1998). Identifying the missing links: genes that connect neural induction and primary neurogenesis in vertebrate embryos. Neuron 21, 455-458. https://doi.org/10.1016/S0896-6273(00)80554-1
  66. Schultz, K.M., Banisadr, G., Lastra, R.O., McGuire, T., Kessler, J.A., Miller, R.J., and McGarry, T.J. (2011). Geminin-deficient neural stem cells exhibit normal cell division and normal neurogenesis. PLoS One 6, e17736. https://doi.org/10.1371/journal.pone.0017736
  67. Seo, S., and Kroll, K.L. (2006). Geminin's double life: chromatin connections that regulate transcription at the transition from proliferation to differentiation. Cell Cycle 5, 374-379. https://doi.org/10.4161/cc.5.4.2438
  68. Seo, S., Herr, A., Lim, J.W., Richardson, G.A., Richardson, H., and Kroll, K.L. (2005). Geminin regulates neuronal differentiation by antagonizing Brg1 activity. Genes Dev. 19, 1723-1734. https://doi.org/10.1101/gad.1319105
  69. Sheng, G., dos Reis, M., and Stern, C.D. (2003). Churchill, a zinc finger transcriptional activator, regulates the transition between gastrulation and neurulation. Cell 115, 603-613. https://doi.org/10.1016/S0092-8674(03)00927-9
  70. Snir, M., Ofir, R., Elias, S., and Frank, D. (2006). Xenopus laevis POU91 protein, an Oct3/4 homologue, regulates competence transitions from mesoderm to neural cell fates. EMBO J. 25, 3664-3674. https://doi.org/10.1038/sj.emboj.7601238
  71. Spella, M., Kyrousi, C., Kritikou, E., Stathopoulou, A., Guillemot, F., Kioussis, D., Pachnis, V., Lygerou, Z., and Taraviras, S. (2011). Geminin regulates cortical progenitor proliferation and differentiation. Stem Cells 29, 1269-1282. https://doi.org/10.1002/stem.678
  72. Spemann, H., and Mangold, H. (2001). Induction of embryonic primordia by implantation of organizers from a different species. 1923. Int. J. Dev. Biol. 45, 13-38.
  73. Stern, C.D. (2005). Neural induction: old problem, new findings, yet more questions. Development 132, 2007-2021. https://doi.org/10.1242/dev.01794
  74. Streit, A., Lee, K.J., Woo, I., Roberts, C., Jessell, T.M., and Stern, C.D. (1998). Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo. Development 125, 507-519.
  75. Streit, A., Berliner, A.J., Papanayotou, C., Sirulnik, A., and Stern, C.D. (2000). Initiation of neural induction by FGF signalling before gastrulation. Nature 406, 74-78. https://doi.org/10.1038/35017617
  76. Sullivan, S.A., Akers, L., and Moody, S.A. (2001). foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain. Dev. Biol. 232, 439-457. https://doi.org/10.1006/dbio.2001.0191
  77. Sun, G., Yu, R.T., Evans, R.M., and Shi, Y. (2007). Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc. Natl. Acad. Sci. USA 104, 15282-15287. https://doi.org/10.1073/pnas.0704089104
  78. Taylor, J.J., Wang, T., and Kroll, K.L. (2006). Tcf- and Vent-binding sites regulate neural-specific geminin expression in the gastrula embryo. Dev. Biol. 289, 494-506. https://doi.org/10.1016/j.ydbio.2005.10.047
  79. Tropepe, V., Hitoshi, S., Sirard, C., Mak, T.W., Rossant, J., and van der Kooy, D. (2001). Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65-78. https://doi.org/10.1016/S0896-6273(01)00263-X
  80. Uwanogho, D., Rex, M., Cartwright, E.J., Pearl, G., Healy, C., Scotting, P.J., and Sharpe, P.T. (1995). Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech. Dev. 49, 23-36. https://doi.org/10.1016/0925-4773(94)00299-3
  81. Verschueren, K., Remacle, J.E., Collart, C., Kraft, H., Baker, B.S., Tylzanowski, P., Nelles, L., Wuytens, G., Su, M.T., Bodmer, R., et al. (1999). SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5'-CACCT sequences in candidate target genes. J. Biol. Chem. 274, 20489-20498. https://doi.org/10.1074/jbc.274.29.20489
  82. Wang, T.W., Stromberg, G.P., Whitney, J.T., Brower, N.W., Klymkowsky, M.W., and Parent, J.M. (2006). Sox3 expression identifies neural progenitors in persistent neonatal and adult mouse forebrain germinative zones. J. Comp. Neurol. 497, 88-100. https://doi.org/10.1002/cne.20984
  83. Wegner, M. (1999). From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res. 27, 1409-1420. https://doi.org/10.1093/nar/27.6.1409
  84. Wegner, M., and Stolt, C.C. (2005). From stem cells to neurons and glia: a Soxist's view of neural development. Trends Neurosci. 28, 583-588. https://doi.org/10.1016/j.tins.2005.08.008
  85. Wichterle, H., Lieberam, I., Porter, J.A., and Jessell, T.M. (2002). Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385-397. https://doi.org/10.1016/S0092-8674(02)00835-8
  86. Wilson, S.I., Graziano, E., Harland, R., Jessell, T.M., and Edlund, T. (2000). An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo. Curr. Biol. 10, 421-429.
  87. Wood, H.B., and Episkopou, V. (1999). Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech. Dev. 86, 197-201. https://doi.org/10.1016/S0925-4773(99)00116-1
  88. Yan, B., Neilson, K.M., and Moody, S.A. (2009). foxD5 plays a critical upstream role in regulating neural ectodermal fate and the onset of neural differentiation. Dev. Biol. 329, 80-95. https://doi.org/10.1016/j.ydbio.2009.02.019
  89. Yan, B., Neilson, K.M., and Moody, S.A. (2010). Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network. Dev. Dyn. 239, 3467-3480. https://doi.org/10.1002/dvdy.22485
  90. Yellajoshyula, D., Patterson, E.S., Elitt, M.S., and Kroll, K.L. (2011). Geminin promotes neural fate acquisition of embryonic stem cells by maintaining chromatin in an accessible and hyperacetylated state. Proc. Natl. Acad. Sci. USA 108, 3294-3299. https://doi.org/10.1073/pnas.1012053108
  91. Yellajoshyula, D., Lim, J.W., Thompson, D.M., Jr., Witt, J.S., Patterson, E.S., and Kroll, K.L. (2012). Geminin regulates the transcriptional and epigenetic status of neuronal fate-promoting genes during mammalian neurogenesis. Mol. Cell. Biol. 32, 4549-4560. https://doi.org/10.1128/MCB.00737-12
  92. Zappone, M.V., Galli, R., Catena, R., Meani, N., De Biasi, S., Mattei, E., Tiveron, C., Vescovi, A.L., Lovell-Badge, R., Ottolenghi, S., et al. (2000). Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 127, 2367-2382.
  93. Zechner, D., Fujita, Y., Hulsken, J., Muller, T., Walther, I., Taketo, M.M., Crenshaw, E.B., 3rd, Birchmeier, W., and Birchmeier, C. (2003). beta-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev. Biol. 258, 406-418. https://doi.org/10.1016/S0012-1606(03)00123-4

피인용 문헌

  1. Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm vol.54, pp.6, 2016, https://doi.org/10.1002/dvg.22943
  2. Protein Palmitoylation Regulates Neural Stem Cell Differentiation by Modulation of EID1 Activity vol.53, pp.8, 2016, https://doi.org/10.1007/s12035-015-9481-y
  3. Neurotrophic Factor-α1: A Key Wnt-β-Catenin Dependent Anti-Proliferation Factor and ERK-Sox9 Activated Inducer of Embryonic Neural Stem Cell Differentiation to Astrocytes in Neurodevelopment vol.35, pp.3, 2017, https://doi.org/10.1002/stem.2511
  4. Gene regulatory networks in neural cell fate acquisition from genome-wide chromatin association of Geminin and Zic1 vol.6, pp.1, 2016, https://doi.org/10.1038/srep37412
  5. Early neural ectodermal genes are activated by siamois and twin during blastula stages vol.53, pp.5, 2015, https://doi.org/10.1002/dvg.22854
  6. expression and, with Pax6, is required and sufficient for retina formation vol.143, pp.19, 2016, https://doi.org/10.1242/dev.130955
  7. Calcium Signaling in Vertebrate Development and Its Role in Disease vol.19, pp.11, 2018, https://doi.org/10.3390/ijms19113390
  8. Untangling Cortical Complexity During Development vol.12, pp.1179-0695, 2018, https://doi.org/10.1177/1179069518759332
  9. Bioinformatic analysis of microRNA expression in Huntington's disease vol.18, pp.3, 2014, https://doi.org/10.3892/mmr.2018.9238
  10. β-actin regulates a heterochromatin landscape essential for optimal induction of neuronal programs during direct reprograming vol.14, pp.12, 2014, https://doi.org/10.1371/journal.pgen.1007846
  11. MPRAnalyze: statistical framework for massively parallel reporter assays vol.20, pp.1, 2014, https://doi.org/10.1186/s13059-019-1787-z
  12. Neurodegenerative Diseases and Cell Reprogramming vol.57, pp.11, 2014, https://doi.org/10.1007/s12035-020-02039-5
  13. Tead transcription factors differentially regulate cortical development vol.10, pp.None, 2014, https://doi.org/10.1038/s41598-020-61490-5
  14. Xenopus leads the way: Frogs as a pioneering model to understand the human brain vol.59, pp.1, 2014, https://doi.org/10.1002/dvg.23405
  15. Alternative Promoter Use Governs the Expression of IgLON Cell Adhesion Molecules in Histogenetic Fields of the Embryonic Mouse Brain vol.22, pp.13, 2014, https://doi.org/10.3390/ijms22136955
  16. An Integrated Perspective of Evolution and Development: From Genes to Function to Ear, Lateral Line and Electroreception vol.13, pp.8, 2014, https://doi.org/10.3390/d13080364
  17. Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos vol.44, pp.10, 2014, https://doi.org/10.14348/molcells.2021.0055
  18. Accessible chromatin reveals regulatory mechanisms underlying cell fate decisions during early embryogenesis vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-86919-3