References
- Ahmed, S., Gan, H.T., Lam, C.S., Poonepalli, A., Ramasamy, S., Tay, Y., Tham, M., and Yu, Y.H. (2009). Transcription factors and neural stem cell self-renewal, growth and differentiation. Cell Adh. Migr. 3, 412-424. https://doi.org/10.4161/cam.3.4.8803
- Aruga, J., Tohmonda, T., Homma, S., and Mikoshiba, K. (2002). Zic1 promotes the expansion of dorsal neural progenitors in spinal cord by inhibiting neuronal differentiation. Dev. Biol. 244, 329-341. https://doi.org/10.1006/dbio.2002.0598
- Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L., Vivian, N., and Lovell-Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126-140. https://doi.org/10.1101/gad.224503
- Bani-Yaghoub, M., Tremblay, R.G., Lei, J.X., Zhang, D., Zurakowski, B., Sandhu, J.K., Smith, B., Ribecco-Lutkiewicz, M., Kennedy, J., Walker, P.R., et al. (2006) .Role of Sox2 in the development of the mouse neocortex. Dev. Biol. 295, 52-66. https://doi.org/10.1016/j.ydbio.2006.03.007
- Bellefroid, E.J., Kobbe, A., Gruss, P., Pieler, T., Gurdon, J.B., and Papalopulu, N. (1998). Xiro3 encodes a Xenopus homolog of the Drosophila Iroquois genes and functions in neural specification. EMBO J. 17, 191-203. https://doi.org/10.1093/emboj/17.1.191
- Bergsland, M., Werme, M., Malewicz, M., Perlmann, T., and Muhr, J. (2006). The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes Dev. 20, 3475-3486. https://doi.org/10.1101/gad.403406
- Bergsland, M., Ramskold, D., Zaouter, C., Klum, S., Sandberg, R., and Muhr, J. (2011). Sequentially acting Sox transcription factors in neural lineage development. Genes Dev. 25, 2453-2464. https://doi.org/10.1101/gad.176008.111
- Bhattaram, P., Penzo-Mendez, A., Sock, E., Colmenares, C., Kaneko, K.J., Vassilev, A., Depamphilis, M.L., Wegner, M., and Lefebvre, V. (2010). Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors. Nat. Commun. 1, 9.
- Brault, V., Moore, R., Kutsch, S., Ishibashi, M., Rowitch, D.H., McMahon, A.P., Sommer, L., Boussadia, O., and Kemler, R. (2001). Inactivation of the beta-catenin gene by Wnt1-Cremediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128, 1253-1264.
- Brewster, R., Lee, J., and Ruiz i Altaba, A. (1998). Gli/Zic factors pattern the neural plate by defining domains of cell differentiation. Nature 393, 579-583. https://doi.org/10.1038/31242
- Bylund, M., Andersson, E., Novitch, B.G., and Muhr, J. (2003). Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat. Neurosci. 6, 1162-1168. https://doi.org/10.1038/nn1131
- Chaddah, R., Arntfield, M., Runciman, S., Clarke, L., and van der Kooy, D. (2012). Clonal neural stem cells from human embryonic stem cell colonies. J. Neurosci. 32, 7771-7781. https://doi.org/10.1523/JNEUROSCI.3286-11.2012
- Chan, T.M., Chen, J.Y., Ho, L.I., Lin, H.P., Hsueh, K.W., Liu, D.D., Chen, Y.H., Hsieh, A.C., Tsai, N.M., Hueng, D.Y., et al. (2014). ADSC therapy in neurodegenerative disorders. Cell Transplant. 23, 549-557. https://doi.org/10.3727/096368914X678445
- Chng, Z., Teo, A., Pedersen, R.A., and Vallier, L. (2010). SIP1 mediates cell-fate decisions between neuroectoderm and mesendoderm in human pluripotent stem cells. Cell Stem Cell 6, 59-70. https://doi.org/10.1016/j.stem.2009.11.015
- Collignon, J., Sockanathan, S., Hacker, A., Cohen-Tannoudji, M., Norris, D., Rastan, S., Stevanovic, M., Goodfellow, P.N., and Lovell-Badge, R. (1996). A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development 122, 509-520.
- Dahmane, N., Sanchez, P., Gitton, Y., Palma, V., Sun, T., Beyna, M., Weiner, H., and Ruiz i Altaba, A. (2001). The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development 128, 5201-5212.
- de la Calle-Mustienes, E., Glavic, A., Modolell, J., and Gomez-Skarmeta, J.L. (2002). Xiro homeoproteins coordinate cell cycle exit and primary neuron formation by upregulating neuronal-fate repressors and downregulating the cell-cycle inhibitor XGadd45-gamma. Mech. Dev. 119, 69-80. https://doi.org/10.1016/S0925-4773(02)00296-4
- De Robertis, E.M., and Kuroda, H. (2004). Dorsal-ventral patterning and neural induction in Xenopus embryos. Ann. Rev. Cell Dev. Biol. 20, 285-308. https://doi.org/10.1146/annurev.cellbio.20.011403.154124
- Devine, M.J., Ryten, M., Vodicka, P., Thomson, A.J., Burdon, T., Houlden, H., Cavaleri, F., Nagano, M., Drummond, N.J., Taanman, J.W., et al. (2011). Parkinson's disease induced pluripotent stem cells with triplication of the alpha-synuclein locus. Nat. Commun. 2, 440. https://doi.org/10.1038/ncomms1453
- Eisaki, A., Kuroda, H., Fukui, A., and Asashima, M. (2000). XSIP1, a member of two-handed zinc finger proteins, induced anterior neural markers in Xenopus laevis animal cap. Biochem. Biophys. Res. Commun. 271, 151-157. https://doi.org/10.1006/bbrc.2000.2545
- Ellis, P., Fagan, B.M., Magness, S.T., Hutton, S., Taranova, O., Hayashi, S., McMahon, A., Rao, M., and Pevny, L. (2004). SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev. Neurosci. 26, 148-165. https://doi.org/10.1159/000082134
- Florio, M., and Huttner, W.B. (2014). Neural progenitors, neurogenesis and the evolution of the neocortex. Development 141, 2182-2194. https://doi.org/10.1242/dev.090571
- Fuccillo, M., Joyner, A.L., and Fishell, G. (2006). Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. Nat. Rev. Neurosci. 7, 772-783. https://doi.org/10.1038/nrn1990
- Fujita, S. (2003). The discovery of the matrix cell, the identification of the multipotent neural stem cell and the development of the central nervous system. Cell Struct. Funct. 28, 205-228. https://doi.org/10.1247/csf.28.205
- Gaiano, N., Nye, J.S., and Fishell, G. (2000). Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26, 395-404. https://doi.org/10.1016/S0896-6273(00)81172-1
- Glavic, A., Gomez-Skarmeta, J.L., and Mayor, R. (2001). Xiro-1 controls mesoderm patterning by repressing bmp-4 expression in the Spemann organizer. Dev. Dyn. 222, 368-376. https://doi.org/10.1002/dvdy.1189
- Gomez-Skarmeta, J.L., Diez del Corral, R., de la Calle-Mustienes, E., Ferre-Marco, D., and Modolell, J. (1996). Araucan and caupolican, two members of the novel iroquois complex, encode homeoproteins that control proneural and vein-forming genes. Cell 85, 95-105. https://doi.org/10.1016/S0092-8674(00)81085-5
- Gomez-Skarmeta, J.L., Glavic, A., de la Calle-Mustienes, E., Modolell, J., and Mayor, R. (1998). Xiro, a Xenopus homolog of the Drosophila Iroquois complex genes, controls development at the neural plate. EMBO J. 17, 181-190. https://doi.org/10.1093/emboj/17.1.181
- Gomez-Skarmeta, J., de La Calle-Mustienes, E., and Modolell, J. (2001). The Wnt-activated Xiro1 gene encodes a repressor that is essential for neural development and downregulates Bmp4. Development 128, 551-560.
- Graham, V., Khudyakov, J., Ellis, P., and Pevny, L. (2003). SOX2 functions to maintain neural progenitor identity. Neuron 39, 749-765. https://doi.org/10.1016/S0896-6273(03)00497-5
- Greber, B., Coulon, P., Zhang, M., Moritz, S., Frank, S., Muller-Molina, A.J., Arauzo-Bravo, M.J., Han, D.W., Pape, H.C., and Scholer, H.R. (2011). FGF signalling inhibits neural induction in human embryonic stem cells. EMBO J. 30, 4874-4884. https://doi.org/10.1038/emboj.2011.407
- Hatakeyama, J., Bessho, Y., Katoh, K., Ookawara, S., Fujioka, M., Guillemot, F., and Kageyama, R. (2004). Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131, 5539-5550. https://doi.org/10.1242/dev.01436
- Hyodo-Miura, J., Urushiyama, S., Nagai, S., Nishita, M., Ueno, N., and Shibuya, H. (2002). Involvement of NLK and Sox11 in neural induction in Xenopus development. Genes Cells 7, 487-496. https://doi.org/10.1046/j.1365-2443.2002.00536.x
- Imayoshi, I., and Kageyama, R. (2014). bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells. Neuron 82, 9-23. https://doi.org/10.1016/j.neuron.2014.03.018
- Ishibashi, M., Ang, S.L., Shiota, K., Nakanishi, S., Kageyama, R., and Guillemot, F. (1995). Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev. 9, 3136-3148. https://doi.org/10.1101/gad.9.24.3136
- Itoh, K., and Sokol, S.Y. (2007). Early development of epidermis and neural tissue. In Principles of Developmental Genetics. S.A.Moody,ed., (New York, USA: Elsevier), pp. 241-257.
- Kalani, M.Y., Cheshier, S.H., Cord, B.J., Bababeygy, S.R., Vogel, H., Weissman, I.L., Palmer, T.D., and Nusse, R. (2008). Wntmediated self-renewal of neural stem/progenitor cells. Proc. Natl. Acad. Sci. USA 105, 16970-16975. https://doi.org/10.1073/pnas.0808616105
- Kishi, M., Mizuseki, K., Sasai, N., Yamazaki, H., Shiota, K., Nakanishi, S., and Sasai, Y. (2000). Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm. Development 127, 791-800.
- Klein, S.L., Neilson, K.M., Orban, J., Yaklichkin, S., Hoffbauer, J., Mood, K., Daar, I.O., and Moody, S.A. (2013). Conserved structural domains in FoxD4L1, a neural forkhead box transcription factor, are required to repress or activate target genes. PLoS One 8, e61845. https://doi.org/10.1371/journal.pone.0061845
- Kroll, K.L., Salic, A.N., Evans, L.M., and Kirschner, M.W. (1998). Geminin, a neuralizing molecule that demarcates the future neural plate at the onset of gastrulation. Development 125, 3247-3258.
- Kuo, J.S., Patel, M., Gamse, J., Merzdorf, C., Liu, X., Apekin, V., and Sive, H. (1998). Opl: a zinc finger protein that regulates neural determination and patterning in Xenopus. Development 125, 2867-2882.
- Levine, M., and Davidson, E.H. (2005). Gene regulatory networks for development. Proc. Natl. Acad. Sci. USA 102, 4936-4942. https://doi.org/10.1073/pnas.0408031102
- Levine, A.J., and Brivanlou, A.H. (2007). Proposal of a model of mammalian neural induction. Dev. Biol. 308, 247-256. https://doi.org/10.1016/j.ydbio.2007.05.036
- Li, M., Pevny, L., Lovell-Badge, R., and Smith, A. (1998). Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr. Biol. 8, 971-974. https://doi.org/10.1016/S0960-9822(98)70399-9
- Lim, J.W., Hummert, P., Mills, J.C., and Kroll, K.L. (2011). Geminin cooperates with Polycomb to restrain multi-lineage commitment in the early embryo. Development 138, 33-44. https://doi.org/10.1242/dev.059824
- Miyagi, S., Masui, S., Niwa, H., Saito, T., Shimazaki, T., Okano, H., Nishimoto, M., Muramatsu, M., Iwama, A., and Okuda, A. (2008). Consequence of the loss of Sox2 in the developing brain of the mouse. FEBS Lett. 582, 2811-2815. https://doi.org/10.1016/j.febslet.2008.07.011
- Mizuseki, K., Kishi, M., Matsui, M., Nakanishi, S., and Sasai, Y. (1998a). Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction. Development 125, 579-587.
- Mizuseki, K., Kishi, M., Shiota, K., Nakanishi, S., and Sasai, Y. (1998b). SoxD: an essential mediator of induction of anterior neural tissues in Xenopus embryos. Neuron 21, 77-85. https://doi.org/10.1016/S0896-6273(00)80516-4
- Mizutani, K., Yoon, K., Dang, L., Tokunaga, A., and Gaiano, N. (2007). Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449, 351-355. https://doi.org/10.1038/nature06090
- Molofsky, A.V., He, S., Bydon, M., Morrison, S.J., and Pardal, R. (2005). Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev. 19, 1432-1437. https://doi.org/10.1101/gad.1299505
- Moody, S.A., Klein, S.L., Karpinski, B.A., Maynard, T.M., and Lamantia, A.S. (2013). On becoming neural: what the embryo can tell us about differentiating neural stem cells. Am. J. Stem Cells 2, 74-94.
- Nakata, K., Nagai, T., Aruga, J., and Mikoshiba, K. (1997). Xenopus Zic3, a primary regulator both in neural and neural crest development. Proc. Natl. Acad. Sci. USA 94, 11980-11985. https://doi.org/10.1073/pnas.94.22.11980
- Nakata, K., Nagai, T., Aruga, J., and Mikoshiba, K. (1998). Xenopus Zic family and its role in neural and neural crest development. Mech. Dev. 75, 43-51. https://doi.org/10.1016/S0925-4773(98)00073-2
- Neely, M.D., Litt, M.J., Tidball, A.M., Li, G.G., Aboud, A.A., Hopkins, C.R., Chamberlin, R., Hong, C.C., Ess, K.C., and Bowman, A.B. (2012). DMH1, a highly selective small molecule BMP inhibitor promotes neurogenesis of hiPSCs: comparison of PAX6 and SOX1 expression during neural induction. ACS Chem. Neurosci. 3, 482-491. https://doi.org/10.1021/cn300029t
- Neilson, K.M., Klein, S.L., Mhaske, P., Mood, K., Daar, I.O., and Moody, S.A. (2012). Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate. Dev. Biol. 365, 363-375. https://doi.org/10.1016/j.ydbio.2012.03.004
- Nitta, K.R., Tanegashima, K., Takahashi, S., and Asashima, M. (2004). XSIP1 is essential for early neural gene expression and neural differentiation by suppression of BMP signaling. Dev. Biol. 275, 258-267. https://doi.org/10.1016/j.ydbio.2004.08.010
- Nitta, K.R., Takahashi, S., Haramoto, Y., Fukuda, M., Tanegashima, K., Onuma, Y., and Asashima, M. (2007). The N-terminus zinc finger domain of Xenopus SIP1 is important for neural induction, but not for suppression of Xbra expression. Int. J. Dev. Biol. 51, 321-325. https://doi.org/10.1387/ijdb.062252kn
- Ohtsuka, T., Sakamoto, M., Guillemot, F., and Kageyama, R. (2001). Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J. Biol. Chem. 276, 30467-30474. https://doi.org/10.1074/jbc.M102420200
- Palma, V., and Ruiz i Altaba, A. (2004). Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development 131, 337-345.
- Penzel, R., Oschwald, R., Chen, Y., Tacke, L., and Grunz, H. (1997). Characterization and early embryonic expression of a neural specific transcription factor xSOX3 in Xenopus laevisInt. J. Dev. Biol. 41, 667-677.
- Rogers, C.D., Archer, T.C., Cunningham, D.D., Grammer, T.C., and Casey, E.M. (2008). Sox3 expression is maintained by FGF signaling and restricted to the neural plate by Vent proteins in the Xenopus embryo. Dev. Biol. 313, 307-319. https://doi.org/10.1016/j.ydbio.2007.10.023
- Rogers, C.D., Moody, S.A., and Casey, E.S. (2009a). Neural induction and factors that stabilize a neural fate.Birth Defects Res. C Embryo Today 87, 249-262.
- Rogers, C.D., Harafuji, N., Archer, T., Cunningham, D.D., and Casey, E.S. (2009b). Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives. Mech. Dev. 126, 42-55. https://doi.org/10.1016/j.mod.2008.10.005
- Ross, C.A., and Akimov, S.S. (2014). Human-induced pluripotent stem cells: potential for neurodegenerative diseases. Hum. Mol. Genet.[Epub ahead of print].
- Sasai, Y. (1998). Identifying the missing links: genes that connect neural induction and primary neurogenesis in vertebrate embryos. Neuron 21, 455-458. https://doi.org/10.1016/S0896-6273(00)80554-1
- Schultz, K.M., Banisadr, G., Lastra, R.O., McGuire, T., Kessler, J.A., Miller, R.J., and McGarry, T.J. (2011). Geminin-deficient neural stem cells exhibit normal cell division and normal neurogenesis. PLoS One 6, e17736. https://doi.org/10.1371/journal.pone.0017736
- Seo, S., and Kroll, K.L. (2006). Geminin's double life: chromatin connections that regulate transcription at the transition from proliferation to differentiation. Cell Cycle 5, 374-379. https://doi.org/10.4161/cc.5.4.2438
- Seo, S., Herr, A., Lim, J.W., Richardson, G.A., Richardson, H., and Kroll, K.L. (2005). Geminin regulates neuronal differentiation by antagonizing Brg1 activity. Genes Dev. 19, 1723-1734. https://doi.org/10.1101/gad.1319105
- Sheng, G., dos Reis, M., and Stern, C.D. (2003). Churchill, a zinc finger transcriptional activator, regulates the transition between gastrulation and neurulation. Cell 115, 603-613. https://doi.org/10.1016/S0092-8674(03)00927-9
- Snir, M., Ofir, R., Elias, S., and Frank, D. (2006). Xenopus laevis POU91 protein, an Oct3/4 homologue, regulates competence transitions from mesoderm to neural cell fates. EMBO J. 25, 3664-3674. https://doi.org/10.1038/sj.emboj.7601238
- Spella, M., Kyrousi, C., Kritikou, E., Stathopoulou, A., Guillemot, F., Kioussis, D., Pachnis, V., Lygerou, Z., and Taraviras, S. (2011). Geminin regulates cortical progenitor proliferation and differentiation. Stem Cells 29, 1269-1282. https://doi.org/10.1002/stem.678
- Spemann, H., and Mangold, H. (2001). Induction of embryonic primordia by implantation of organizers from a different species. 1923. Int. J. Dev. Biol. 45, 13-38.
- Stern, C.D. (2005). Neural induction: old problem, new findings, yet more questions. Development 132, 2007-2021. https://doi.org/10.1242/dev.01794
- Streit, A., Lee, K.J., Woo, I., Roberts, C., Jessell, T.M., and Stern, C.D. (1998). Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo. Development 125, 507-519.
- Streit, A., Berliner, A.J., Papanayotou, C., Sirulnik, A., and Stern, C.D. (2000). Initiation of neural induction by FGF signalling before gastrulation. Nature 406, 74-78. https://doi.org/10.1038/35017617
- Sullivan, S.A., Akers, L., and Moody, S.A. (2001). foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain. Dev. Biol. 232, 439-457. https://doi.org/10.1006/dbio.2001.0191
- Sun, G., Yu, R.T., Evans, R.M., and Shi, Y. (2007). Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc. Natl. Acad. Sci. USA 104, 15282-15287. https://doi.org/10.1073/pnas.0704089104
- Taylor, J.J., Wang, T., and Kroll, K.L. (2006). Tcf- and Vent-binding sites regulate neural-specific geminin expression in the gastrula embryo. Dev. Biol. 289, 494-506. https://doi.org/10.1016/j.ydbio.2005.10.047
- Tropepe, V., Hitoshi, S., Sirard, C., Mak, T.W., Rossant, J., and van der Kooy, D. (2001). Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65-78. https://doi.org/10.1016/S0896-6273(01)00263-X
- Uwanogho, D., Rex, M., Cartwright, E.J., Pearl, G., Healy, C., Scotting, P.J., and Sharpe, P.T. (1995). Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech. Dev. 49, 23-36. https://doi.org/10.1016/0925-4773(94)00299-3
- Verschueren, K., Remacle, J.E., Collart, C., Kraft, H., Baker, B.S., Tylzanowski, P., Nelles, L., Wuytens, G., Su, M.T., Bodmer, R., et al. (1999). SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5'-CACCT sequences in candidate target genes. J. Biol. Chem. 274, 20489-20498. https://doi.org/10.1074/jbc.274.29.20489
- Wang, T.W., Stromberg, G.P., Whitney, J.T., Brower, N.W., Klymkowsky, M.W., and Parent, J.M. (2006). Sox3 expression identifies neural progenitors in persistent neonatal and adult mouse forebrain germinative zones. J. Comp. Neurol. 497, 88-100. https://doi.org/10.1002/cne.20984
- Wegner, M. (1999). From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res. 27, 1409-1420. https://doi.org/10.1093/nar/27.6.1409
- Wegner, M., and Stolt, C.C. (2005). From stem cells to neurons and glia: a Soxist's view of neural development. Trends Neurosci. 28, 583-588. https://doi.org/10.1016/j.tins.2005.08.008
- Wichterle, H., Lieberam, I., Porter, J.A., and Jessell, T.M. (2002). Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385-397. https://doi.org/10.1016/S0092-8674(02)00835-8
- Wilson, S.I., Graziano, E., Harland, R., Jessell, T.M., and Edlund, T. (2000). An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo. Curr. Biol. 10, 421-429.
- Wood, H.B., and Episkopou, V. (1999). Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech. Dev. 86, 197-201. https://doi.org/10.1016/S0925-4773(99)00116-1
- Yan, B., Neilson, K.M., and Moody, S.A. (2009). foxD5 plays a critical upstream role in regulating neural ectodermal fate and the onset of neural differentiation. Dev. Biol. 329, 80-95. https://doi.org/10.1016/j.ydbio.2009.02.019
- Yan, B., Neilson, K.M., and Moody, S.A. (2010). Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network. Dev. Dyn. 239, 3467-3480. https://doi.org/10.1002/dvdy.22485
- Yellajoshyula, D., Patterson, E.S., Elitt, M.S., and Kroll, K.L. (2011). Geminin promotes neural fate acquisition of embryonic stem cells by maintaining chromatin in an accessible and hyperacetylated state. Proc. Natl. Acad. Sci. USA 108, 3294-3299. https://doi.org/10.1073/pnas.1012053108
- Yellajoshyula, D., Lim, J.W., Thompson, D.M., Jr., Witt, J.S., Patterson, E.S., and Kroll, K.L. (2012). Geminin regulates the transcriptional and epigenetic status of neuronal fate-promoting genes during mammalian neurogenesis. Mol. Cell. Biol. 32, 4549-4560. https://doi.org/10.1128/MCB.00737-12
- Zappone, M.V., Galli, R., Catena, R., Meani, N., De Biasi, S., Mattei, E., Tiveron, C., Vescovi, A.L., Lovell-Badge, R., Ottolenghi, S., et al. (2000). Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 127, 2367-2382.
- Zechner, D., Fujita, Y., Hulsken, J., Muller, T., Walther, I., Taketo, M.M., Crenshaw, E.B., 3rd, Birchmeier, W., and Birchmeier, C. (2003). beta-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev. Biol. 258, 406-418. https://doi.org/10.1016/S0012-1606(03)00123-4
Cited by
- Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm vol.54, pp.6, 2016, https://doi.org/10.1002/dvg.22943
- Protein Palmitoylation Regulates Neural Stem Cell Differentiation by Modulation of EID1 Activity vol.53, pp.8, 2016, https://doi.org/10.1007/s12035-015-9481-y
- Neurotrophic Factor-α1: A Key Wnt-β-Catenin Dependent Anti-Proliferation Factor and ERK-Sox9 Activated Inducer of Embryonic Neural Stem Cell Differentiation to Astrocytes in Neurodevelopment vol.35, pp.3, 2017, https://doi.org/10.1002/stem.2511
- Gene regulatory networks in neural cell fate acquisition from genome-wide chromatin association of Geminin and Zic1 vol.6, pp.1, 2016, https://doi.org/10.1038/srep37412
- Early neural ectodermal genes are activated by siamois and twin during blastula stages vol.53, pp.5, 2015, https://doi.org/10.1002/dvg.22854
- expression and, with Pax6, is required and sufficient for retina formation vol.143, pp.19, 2016, https://doi.org/10.1242/dev.130955
- Calcium Signaling in Vertebrate Development and Its Role in Disease vol.19, pp.11, 2018, https://doi.org/10.3390/ijms19113390
- Untangling Cortical Complexity During Development vol.12, pp.1179-0695, 2018, https://doi.org/10.1177/1179069518759332
- Bioinformatic analysis of microRNA expression in Huntington's disease vol.18, pp.3, 2014, https://doi.org/10.3892/mmr.2018.9238
- β-actin regulates a heterochromatin landscape essential for optimal induction of neuronal programs during direct reprograming vol.14, pp.12, 2014, https://doi.org/10.1371/journal.pgen.1007846
- MPRAnalyze: statistical framework for massively parallel reporter assays vol.20, pp.1, 2014, https://doi.org/10.1186/s13059-019-1787-z
- Neurodegenerative Diseases and Cell Reprogramming vol.57, pp.11, 2014, https://doi.org/10.1007/s12035-020-02039-5
- Tead transcription factors differentially regulate cortical development vol.10, pp.None, 2014, https://doi.org/10.1038/s41598-020-61490-5
- Xenopus leads the way: Frogs as a pioneering model to understand the human brain vol.59, pp.1, 2014, https://doi.org/10.1002/dvg.23405
- Alternative Promoter Use Governs the Expression of IgLON Cell Adhesion Molecules in Histogenetic Fields of the Embryonic Mouse Brain vol.22, pp.13, 2014, https://doi.org/10.3390/ijms22136955
- An Integrated Perspective of Evolution and Development: From Genes to Function to Ear, Lateral Line and Electroreception vol.13, pp.8, 2014, https://doi.org/10.3390/d13080364
- Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos vol.44, pp.10, 2014, https://doi.org/10.14348/molcells.2021.0055
- Accessible chromatin reveals regulatory mechanisms underlying cell fate decisions during early embryogenesis vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-86919-3