DOI QR코드

DOI QR Code

Inhibition of the Interleukin-11-STAT3 Axis Attenuates Hypoxia-Induced Migration and Invasion in MDA-MB-231 Breast Cancer Cells

  • Lim, Ji-Hong (Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University)
  • 투고 : 2014.05.07
  • 심사 : 2014.08.19
  • 발행 : 2014.10.30

초록

Although interleukin-11 (IL-11) has been reported to be elevated in hypoxic tumors and has been associated with a poor prognosis in various cancers, little is known about its precise role in promoting metastasis in hypoxic tumors. In the present study, the molecular mechanism underlying the effects of IL-11 on MDA-MB-231 breast cancer cells migration and invasion in relation to metastasis under hypoxic conditions has been defined. Inhibition of IL-11 expression or function using small interfering RNA (siRNA) or a neutralizing antibody attenuated hypoxic MDA-MB-231 breast cancer cell migration and invasion through down-regulation of matrix metalloproteinases (MMPs) and activation of epithelial-to-mesenchymal transition (EMT) related gene expression. In addition, hypoxia-induced IL-11 increased STAT3 phosphorylation and STAT3 knockdown suppressed hypoxic MDA-MB-231 breast cancer cell invasion due to reduced MMP levels and reprogrammed EMT-related gene expression. These results suggest that one of the hypoxic metastasis pathways and the regulation of this pathway could be a potential target for novel cancer therapeutics.

키워드

참고문헌

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646-674. https://doi.org/10.1016/j.cell.2011.02.013
  2. Tsai YP, Wu KJ. Hypoxia-regulated target genes implicated in tumor metastasis. J Biomed Sci. 2012;19:102. https://doi.org/10.1186/1423-0127-19-102
  3. Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012;33:207-214. https://doi.org/10.1016/j.tips.2012.01.005
  4. Chan DA, Giaccia AJ. Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev. 2007;26:333-339. https://doi.org/10.1007/s10555-007-9063-1
  5. Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer. 2008;8:967-975. https://doi.org/10.1038/nrc2540
  6. Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol. 2014;26:54-74. https://doi.org/10.1016/j.smim.2014.01.001
  7. Ren L, Wang X, Dong Z, Liu J, Zhang S. Bone metastasis from breast cancer involves elevated IL-11 expression and the gp130/STAT3 pathway. Med Oncol. 2013;30:634. https://doi.org/10.1007/s12032-013-0634-4
  8. Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, Manova-Todorova K, Blasberg R, Gerald WL, Massague J. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci U S A. 2005;102: 13909-13914. https://doi.org/10.1073/pnas.0506517102
  9. Tsai CY, Wang CS, Tsai MM, Chi HC, Cheng WL, Tseng YH, Chen CY, Lin CD, Wu JI, Wang LH, Lin KH. Interleukin-32 increases human gastric cancer cell invasion associated with tumor progression and metastasis. Clin Cancer Res. 2014; 20:2276-2288. https://doi.org/10.1158/1078-0432.CCR-13-1221
  10. Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Cespedes MV, Sevillano M, Nadal C, Jung P, Zhang XH, Byrom D, Riera A, Rossell D, Mangues R, Massague J, Sancho E, Batlle E. Dependency of colorectal cancer on a TGF-${\beta}$-driven program in stromal cells for metastasis initiation. Cancer Cell. 2012;22:571-584. https://doi.org/10.1016/j.ccr.2012.08.013
  11. Shin SY, Choi C, Lee HG, Lim Y, Lee YH. Transcriptional regulation of the interleukin-11 gene by oncogenic Ras. Carcinogenesis. 2012;33:2467-2476. https://doi.org/10.1093/carcin/bgs297
  12. Onnis B, Fer N, Rapisarda A, Perez VS, Melillo G. Autocrine production of IL-11 mediates tumorigenicity in hypoxic cancer cells. J Clin Invest. 2013;123:1615-1629. https://doi.org/10.1172/JCI59623
  13. Gao YB, Xiang ZL, Zhou LY, Wu ZF, Fan J, Zeng HY, Zeng ZC. Enhanced production of CTGF and IL-11 from highly metastatic hepatoma cells under hypoxic conditions: an implication of hepatocellular carcinoma metastasis to bone. J Cancer Res Clin Oncol. 2013;139:669-679. https://doi.org/10.1007/s00432-012-1370-4
  14. Huang S. Regulation of metastases by signal transducer and activator of transcription 3 signaling pathway: clinical implications. Clin Cancer Res. 2007;13:1362-1366. https://doi.org/10.1158/1078-0432.CCR-06-2313
  15. Bromberg J. Stat proteins and oncogenesis. J Clin Invest. 2002;109:1139-1142. https://doi.org/10.1172/JCI0215617
  16. Seo IA, Lee HK, Shin YK, Lee SH, Seo SY, Park JW, Park HT. Janus Kinase 2 Inhibitor AG490 inhibits the STAT3 signaling pathway by suppressing protein translation of gp130. Korean J Physiol Pharmacol. 2009;13:131-138. https://doi.org/10.4196/kjpp.2009.13.2.131
  17. Rokavec M, Oner MG, Li H, Jackstadt R, Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S, Slotta-Huspenina J, Bader FG, Greten FR, Hermeking H. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 2014;124:1853-1867. https://doi.org/10.1172/JCI73531
  18. Ito N, Eto M, Nakamura E, Takahashi A, Tsukamoto T, Toma H, Nakazawa H, Hirao Y, Uemura H, Kagawa S, Kanayama H, Nose Y, Kinukawa N, Nakamura T, Jinnai N, Seki T, Takamatsu M, Masui Y, Naito S, Ogawa O. STAT3 polymorphism predicts interferon-alfa response in patients with metastatic renal cell carcinoma. J Clin Oncol. 2007;25:2785-2791. https://doi.org/10.1200/JCO.2006.09.8897
  19. Fang Z, Tang Y, Fang J, Zhou Z, Xing Z, Guo Z, Guo X, Wang W, Jiao W, Xu Z, Liu Z. Simvastatin inhibits renal cancer cell growth and metastasis via AKT/mTOR, ERK and JAK2/STAT3 pathway. PLoS One. 2013;8:e62823. https://doi.org/10.1371/journal.pone.0062823
  20. Steder M, Alla V, Meier C, Spitschak A, Pahnke J, Furst K, Kowtharapu BS, Engelmann D, Petigk J, Egberts F, Schad-Trcka SG, Gross G, Nettelbeck DM, Niemetz A, Putzer BM. DNp73 exerts function in metastasis initiation by disconnecting the inhibitory role of EPLIN on IGF1R-AKT/ STAT3 signaling. Cancer Cell. 2013;24:512-527. https://doi.org/10.1016/j.ccr.2013.08.023
  21. Pawlus MR, Wang L, Hu CJ. STAT3 and HIF1${\alpha}$ cooperatively activate HIF1 target genes in MDA-MB-231 and RCC4 cells. Oncogene. 2014;33:1670-1679. https://doi.org/10.1038/onc.2013.115
  22. Mamlouk S, Wielockx B. Hypoxia-inducible factors as key regulators of tumor inflammation. Int J Cancer. 2013;132: 2721-2729. https://doi.org/10.1002/ijc.27901
  23. Li TM, Wu CM, Huang HC, Chou PC, Fong YC, Tang CH. Interleukin-11 increases cell motility and up-regulates intercellular adhesion molecule-1 expression in human chondrosarcoma cells. J Cell Biochem. 2012;113:3353-3362. https://doi.org/10.1002/jcb.24211
  24. Lay V, Yap J, Sonderegger S, Dimitriadis E. Interleukin 11 regulates endometrial cancer cell adhesion and migration via STAT3. Int J Oncol. 2012;41:759-764.

피인용 문헌

  1. Infiltration of F98 glioma cells in Fischer rat brain is temporary stimulated by radiation vol.92, pp.8, 2014, https://doi.org/10.1080/09553002.2016.1175682
  2. Tumor Cell Invasion Induced by Radiation in Balb/C Mouse is Prevented by the Cox-2 Inhibitor NS-398 vol.188, pp.6, 2014, https://doi.org/10.1667/rr14716.1
  3. Role of Matrix Metalloproteinases in Angiogenesis and Cancer vol.9, pp.None, 2019, https://doi.org/10.3389/fonc.2019.01370
  4. miR‐204‐5p regulates cell proliferation, invasion, and apoptosis by targeting IL‐11 in esophageal squamous cell carcinoma vol.235, pp.3, 2014, https://doi.org/10.1002/jcp.29209
  5. Activation of STAT-3 signalling by RECK downregulation via ROS is involved in the 27-hydroxycholesterol-induced invasion in breast cancer cells vol.54, pp.2, 2014, https://doi.org/10.1080/10715762.2020.1715965
  6. Targeting TRAF3IP2, Compared to Rab27, is More Effective in Suppressing the Development and Metastasis of Breast Cancer vol.10, pp.None, 2014, https://doi.org/10.1038/s41598-020-64781-z
  7. Interleukin 11 (IL-11): Role(s) in Breast Cancer Bone Metastases vol.9, pp.6, 2021, https://doi.org/10.3390/biomedicines9060659