DOI QR코드

DOI QR Code

Measuring Leaf Areas with a Structured-Light 3D Scanner

3차원 구조광 스캐너를 이용한 식물의 잎 면적 측정 방법

  • Nam, Kyong-Hee (Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology) ;
  • Ko, Eun Mi (Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology) ;
  • Mun, Saeromi (Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology) ;
  • Kim, Chang-Gi (Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology)
  • 남경희 (한국생명공학연구원 바이오평가센터) ;
  • 고은미 (한국생명공학연구원 바이오평가센터) ;
  • 문새로미 (한국생명공학연구원 바이오평가센터) ;
  • 김창기 (한국생명공학연구원 바이오평가센터)
  • Received : 2014.09.01
  • Accepted : 2014.09.16
  • Published : 2014.09.30

Abstract

We have developed a non-destructive, touch-free method for estimating leaf areas with a structured-light three-dimensional (3D) scanner. When the surfaces of soybean leaves were analyzed with both the 3D scanner and a leaf area meter, the results were linearly related ($R^2=0.90$). The strong correlation ($R^2=0.98$) was calculated between shoot fresh weights and leaf areas when the scanner was employed during growth stages V1 to V4. We also found that leaf areas measured by the scanner could be used to detect changes in growth responses to abiotic stress. Whereas under control conditions the areas increased over time, salt and drought treatments were associated with reductions in those values after 14 d and 12 d, respectively. Based on our findings, we propose that a structured-light 3D scanner can be used to obtain reliable estimates of leaf area and plant biomass.

3차원 구조광 스캐너를 이용하여 비파괴적, 비접촉적으로 식물 잎 면적을 측정하는 방법을 고안하고자 하였다. 3차원 구조광 스캐너를 이용하여 측정한 콩의 잎 면적은 엽면적 측정기로 측정한 잎 면적과 높은 상관관계를 보였다. 또한 콩의 V1~V4까지의 각 생장단계마다 3차원 스캔 이미지를 이용하여 측정한 잎 면적은 지상부를 수확한 후 측정한 생중량 분석 결과와 매우 높은 상관관계($R^2=0.98$)를 나타내었다. 가뭄 및 염분 스트레스 환경에서 3차원 스캐너를 이용하여 시간에 따른 콩의 생장의 변화를 비교한 결과, 대조구의 식물체 잎 면적은 시간이 경과될수록 증가한 반면 가뭄 및 염분처리구의 식물체 잎 면적은 처리 12일과 14일 후 각각 감소하여 처리구 간 뚜렷한 차이를 나타내었다. 이러한 결과를 통해 3차원 스캐너를 이용하여 다양한 환경에서 식물체의 잎 면적과 생체량을 효과적으로 추정할 수 있음을 확인하였다.

Keywords

References

  1. Barker, N.R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology 59: 89-113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
  2. Bettina, M.J.E., T.T. Melvin and A.K. Thomas. 2007. Visual assessment of wilting as a measure of leaf water potential and seedling drought survival. Journal of Tropical Ecology 23: 497-500. https://doi.org/10.1017/S026646740700421X
  3. Buck, U., N. Albertini, S. Naether and M.J. Thali. 2007. 3D documentation of footwear impressions and tyre tracks in snow with high resolution optical surface scanning. Forensic Science International 171: 157-164. https://doi.org/10.1016/j.forsciint.2006.11.001
  4. Cai, X., Y. Sun, Y. Zhao, L. Damerow, P. Schulze Lammers, W. Sun, J. Lin, L. Zheng and Y. Tang. 2013. Smart detection of leaf wilting by 3D image processing and 2D Fourier transform. Computers and Electronics in Agriculture 90: 68-75. https://doi.org/10.1016/j.compag.2012.11.005
  5. Gartner, H., B. Wagner, I. Heinrich and C. Denier. 2009. 3D-laser scanning: a new method to analyze coarse tree root systems. Forest Snow and Landscape Research 82: 95-106.
  6. Grant, O.M., L. Tronina, H.G. Jones and M.M. Chaves. 2007. Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. Journal of Experimental Botany 58: 815-825.
  7. McPherron, S.P., T. Gernat and J.-J. Hublin. 2009. Structured light scanning for high-resolution documentation of in situ archaeological finds. Journal of Archaeological Science 36: 19-24. https://doi.org/10.1016/j.jas.2008.06.028
  8. Patty, L., S.R.P. Halloy, E. Hiltbrunner and C. Korner. 2010. Biomass allocation in herbaceous plants under grazing impact in the high semi-arid Andes. Flora 205: 695-703. https://doi.org/10.1016/j.flora.2009.12.039
  9. Paulus, S., J. Dupuis, A.-K. Mahlein and H. Kuhlmann. 2013. Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping. BMC Bioinformatics 14: 238. https://doi.org/10.1186/1471-2105-14-238
  10. Rocchini, C., P. Cignoni, C. Montani, P. Pingi and R. Scopigno. 2001. A low cost 3D scanner based on structured light. Computer Graphics Forum 20: 299-308. https://doi.org/10.1111/1467-8659.00522
  11. Sansoni, G., M. Trebeschi and F. Docchio. 2009. State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation. Sensors 9: 568-601. https://doi.org/10.3390/s90100568
  12. Seidel, D., F. Beyer, D. Hertel, S. Fleck and C. Leuschner. 2011. 3D-laser scanning: A non-destructive method for studying above-ground biomass and growth of juvenile trees. Agricultural Forest Meteorology 151: 1305-1311. https://doi.org/10.1016/j.agrformet.2011.05.013
  13. Wagner, B., H. Gartner, H. Ingensand and S. Santini. 2010. Incorporating 2D tree-ring data in 3D laser scans of coarse-root systems. Plant and Soil 334: 175-187. https://doi.org/10.1007/s11104-010-0370-x