DOI QR코드

DOI QR Code

Performance Optimization of Tandem Source-Channel Coding Systems Employing Unequal Error Protection Under Complexity Constraints

복잡도 제한 하에서 비균등 오류 보호 기법을 사용하는 탠덤 소스-채널 코딩 시스템의 성능 최적화

  • Lim, Jongtae (Department of Electronics & Electrical Engineering, Hongik University)
  • Received : 2014.07.02
  • Accepted : 2014.08.13
  • Published : 2014.10.31

Abstract

Between tandem source-channel coding systems and joint source-channel coding systems, it has been known that there is a complexity threshold in complexity versus performance. In this paper, by expanding the previous analysis for equal error protection systems, we analyze and compare the performance under complexity constrains for tandem source-channel coding systems which employ unequal error protection. Under a given complexity constraint, the optimization is performed to minimize the end-to-end distortion of each representative tandem and joint source-channel coding system. The results show that the complexity threshold for unequal error protection systems becomes smaller and the performance enhancement of unequal error protection systems over equal error protection systems gets smaller as the system complexity gets larger.

탠덤 소스-채널 코딩 시스템과 결합 소스-채널 코딩시스템 사이에 복잡도에 대한 성능에 있어서 복잡도 문턱값이 존재한다는 것이 알려져 왔다. 본 논문에서는 균등 오류 보호 기법을 사용한 기존의 분석을 확장하여 비균등 오류 보호 기법을 사용한 탠덤 소스-채널 코딩 시스템의 복잡도에 따른 성능을 비교 분석하고자 한다. 복잡도의 제한이 주어진 상황에서 대표적인 탠덤 소스-채널 코딩 시스템과 결합 소스-채널 코딩 시스템의 최종단 왜곡을 최소화하는 최적화를 시행하였다. 그 결과, 비균등 오류 보호의 탠덤 소스-채널 코딩 시스템의 복잡도 문턱값은 더 작아지며, 균등 오류 보호 시스템에 대한 비균등 오류 정정 기법의 시스템의 성능 향상은 시스템 복잡도가 높아질수록 작아짐을 확인하였다.

Keywords

References

  1. C. E. Shannon, "A mathematical theory of communication," Bell Syst.Tech. J., vol. 27, pp. 379.423, Jul./Oct. 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  2. J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York, NY: McGraw-Hill, 1997.
  3. A. Gabay, M. Kieffer, P. Duhamel, "Joint Source-Channel Coding Using Real BCH Codes for Robust Image Transmission," IEEE Transactions on Image Processing, vol.16, no.6, pp.1568-1583, June 2007. https://doi.org/10.1109/TIP.2007.896698
  4. N. Farvardin and V. Vaishampayan, "Optimal quantizer design for noisy channels: An approach to combined source-Channel coding," IEEE Trans. Inf. Theory, vol. IT-33, no. 6, pp. 827-838, Nov. 1987.
  5. N. Farvardin, "A study of vector quantization for noisy channels," IEEE Trans. Inf. Theory, vol. 36, no. 4, pp. 799-809, Jul. 1990. https://doi.org/10.1109/18.53739
  6. N. Farvardin and V. Vaishampayan, "On the performance and complexity of channel-optimized vector quantizers," IEEE Trans. Inf. Theory, vol. 37, no. 1, pp. 155-160, Jan. 1991. https://doi.org/10.1109/18.61130
  7. N. Phamdo, F. Alajaji, and N. Farvardin, "Quantization of memoryless and Gauss-Markov sources over binary Markov channels," IEEE Trans. Commun., vol. 45, no. 6, pp. 668-675, Jun. 1997. https://doi.org/10.1109/26.592605
  8. H.E. Saffar, F. Alajaji, T. Linder, "Channel optimized vector quantization based on Maximum a Posteriori hard decision demodulation," in Proceeding on the 24th Biennial Symposium on Communications, pp.328,331, 24-26 June 2008.
  9. Y. Zhong, F. Alajaji, and L. L. Campbell, "On the joint source-channel coding error exponent for discrete memoryless systems," IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1450.1468, Apr. 2006. https://doi.org/10.1109/TIT.2006.871608
  10. J. Lim and D. L. Neuhoff, "Joint and tandem source-channel coding with complexity and delay constraints," IEEE Trans. Commun., vol. 51, no. 5, pp. 757-766, May 2003. https://doi.org/10.1109/TCOMM.2003.811386
  11. W. Yadong, F. Alajaji, T. Linder, "Hybrid digital-analog coding with bandwidth compression for gaussian source-channel pairs," IEEE Transactions on Communications , vol.57, no.4, pp.997-1012, April 2009. https://doi.org/10.1109/TCOMM.2009.04.070165
  12. S. Shahidi, F. Alajaji, T. Linder,"MAP Detection and Robust Lossy Coding Over Soft-Decision Correlated Fading Channels," IEEE Transactions on Vehicular Technology, vol.62, no.7, pp.3175,3187, Sept. 2013. https://doi.org/10.1109/TVT.2013.2252213
  13. O.Y. Bursalioglu, G. Caire, "Is Unequal Error Protection useful?," 2011 IEEE International Symposium on Information Theory Proceedings (ISIT), pp.1402,1406, July 31-Aug. 5, 2011.
  14. V. Vaishampayan and N. Favardin, "Optimal block cosine transform image coding for noisy channels," IEEE Trans. Commun., vol. 38, pp.327-336, Mar. 1990. https://doi.org/10.1109/26.48890
  15. R. E. Totty and G. C. Clark, "Reconstruction error in waveform transmission," IEEE Trans. Inform. Theory, vol. IT-13, pp. 336-338, Apr. 1967.
  16. A. Gray and R. M. Gray, Vector Quantization and Signal Compression, Kluwer academic publishers, pp. 234-235, 1991.