초록
깊이 영상을 이용한 동작 인식 시스템에서는 효율적인 알고리즘 적용을 위하여 깊이 영상을 3차원 점군 데이터로 구성되는 실제 공간으로 변환하여 알고리즘을 적용한 후 투영공간으로 변환하여 출력한다. 하지만 변환 과정 중 반올림 오차와 적용되는 알고리즘에 의한 데이터 손실이 발생하게 된다. 본 논문에서는 3차원 점군 데이터에서 깊이 영상으로의 변환 시 반올림 오차와 영상의 크기 변화에 따른 데이터 손실이 발생하지 않는 효율적인 방법과 이를 하드웨어로 구현 하는 방법을 제안 하였다. 최종적으로 제안된 알고리즘은 OpenCV와 Window 프로그램을 사용하여 소프트웨어적으로 알고리즘을 검증하였고, Kinect를 사용하여 실시간으로 성능을 테스트하였다. 또한, Verilog-HDL을 사용하여 하드웨어 시스템을 설계하고, Xilinx Zynq-7000 FPGA 보드에 탑재하여 검증하였다.
In the motion recognition system using depth image, the depth image is converted to the real world formed 3D point cloud data for efficient algorithm apply. And then, output depth image is converted by the projective world after algorithm apply. However, when coordinate conversion, rounding error and data loss by applied algorithm are occurred. In this paper, when convert 3D point cloud data to depth image, we proposed efficient conversion method and its hardware implementation without rounding error and data loss according image size change. The proposed system make progress using the OpenCV and the window program, and we test a system using the Kinect in real time. In addition, designed using Verilog-HDL and verified through the Zynq-7000 FPGA Board of Xilinx.