DOI QR코드

DOI QR Code

구획화재실험을 통한 온도 변화 예측 기법 연구

The Study on the Prediction of Temperature Curve by Compartment Fire Experiment

  • 권오상 (한국건설기술연구원 화재안전연구센터)
  • 투고 : 2014.07.21
  • 심사 : 2014.10.17
  • 발행 : 2014.10.31

초록

본 연구에서는 건축물에서의 성능기반 화재안전 설계 시에 사용되는 구획공간에서의 화재 성상 분석을 위해서 사무실 공간을 대상으로 하여 $2.4(L){\times}3.6(W){\times}2.4(H)m$의 크기의 구획 Mock-up을 제작하고 구획 내부에는 화재하중 $18.74kg/m^2$을 적용하여 책상, 의자, 컴퓨터 등과 같은 실제 가연물을 배치하여 화재실험을 실시하였다. 화재실험 결과, 구획 공간의 내부 중앙에서는 394~408 s 사이에 $600^{\circ}C$에 도달하였고 구획 입구 모서리에서는 404~420 s 사이에 $600^{\circ}C$에 도달하였다. 본 연구에서는 화재실험을 통해 측정된 온도변화 데이터를 BFD 곡선에 적용하여 화재시 구획 공간내의 온도변화 예측 기법을 분석하고자 하였으며, 화재실험을 통해 BFD 곡선 인자는 최대온도 $900^{\circ}C$, 최대온도 도달시간 7분과 형태계수 1.5로 결정하였다. BFD 곡선에 적용된 사무실 공간의 시간에 따른 온도 곡선은 화재초기에 빠르게 상승한 이후에 약 9분경 이후에 감소하는 형태를 나타내고 있다.

In this study, the Mock-up office space experiments have been performed for the fire behavior analysis of the compartmented space used for the performance-based fire safety design of buildings. Mock-up test was conducted using the compartmented office space dimensions, which are 2.4 m wide, 3.6 m wide, and 2.4 m hight. Test was conducted with the combustible materials such as a desk, a chair, a computer ect. The fire load in the Mock-up office space was $18.74kg/m^2$. As a result, the temperature of the central compartment space to reach $600^{\circ}C$ were 394 to 408 s. The temperature of the corner near the entrance edge to reach $600^{\circ}C$ were 404 to 420 s. At this study, the temperature curve in the compartmented space has been predicted using the temperature data appling the BFD curve. The BFD curve factor based on the fire tests was determined by the maximum temperature of $900^{\circ}C$, 7 min to reach the maximum temperature, and the shape coefficient of 1.5. The initiating fire was rapidly increased to 9 min, and decreased.

키워드

참고문헌

  1. A. H. Buchanan, "Fire Engineering Design Guide", University of Canterbury, pp. 29-31 (2001).
  2. George V. Hadjisophocleous and Noureddine Benichou, "Performance Criteria Used in Fire Safety Design", Automation in Construction 8, pp. 489-501 (1999). https://doi.org/10.1016/S0926-5805(98)00096-X
  3. Korean Agency for Technology and Standards, "Fire Tests-full-scale Room Test for Surface Products", KS F ISO 9705 (2009).
  4. BSI, "Application of Fire Safety Engineering Principles to the Design of Buildings", BS PD 7974-3, pp. 52-60 (2011).
  5. BSI, "Fire Resistance Tests. Alternative and Additional Procedures", BS EN 1363-2 (1999).
  6. C. R. Barnett, "BFD Curve: A New Empirical Model for Fire Compartment Temperatures", Fire Safety Journal, 37, pp. 437-463 (2002). https://doi.org/10.1016/S0379-7112(02)00006-1
  7. D. H. Kim, "A Study on the Establishment of the Fire Load by Building Occupancy", Ph. D. Program in Architectural Engineering Graduate School, Konkuk University, pp. 85-93 (2003).
  8. Korean Agency for Technology and Standards, "Thermocouples", KS C 1602:2009 (2009).
  9. NFPA, "Standard Methods of Fire Tests for Evaluating Room Fire Growth Contribution of Textile Coverings on Full Height Panels and Walls", NFPA 265 (2002).
  10. C. R. Barnett and G. C. Clifton, "Examples of Fire Engineering Design for Steel Memvers, Using a Standard Curve Versus a New Parametric Curve", Fire and Materials, pp. 309-322 (2004).
  11. C. R. Barnett, "Replacing International Temperature-time Curves with BFD Curve", Fire Safety Journal, pp. 321-327 (2007).
  12. Qiang Xu, Gregory J. Griffin, Yong Jiang and Cong Jin, "An Evaluation of the BFD Curve Based upon Wood Crib Fires Performed in an ISO9705 Room", Thermal Science, Vol. 14, No. 2, pp. 521-531 (2010). https://doi.org/10.2298/TSCI1002521X