DOI QR코드

DOI QR Code

Analysis of the Scattering Property of Dielectric Scatterer with Impedance Boundary Condition

임피던스 경계면 조건을 적용한 유전체의 산란 특성 분석

  • Hwang, Ji-Hwan (Department of Electronic Information and Communication Engineering, Hongik University) ;
  • Park, Sin-Myeong (Department of Electronic Information and Communication Engineering, Hongik University) ;
  • Oh, Yisok (Department of Electronic Information and Communication Engineering, Hongik University)
  • 황지환 (홍익대학교 전자정보통신공학과) ;
  • 박신명 (홍익대학교 전자정보통신공학과) ;
  • 오이석 (홍익대학교 전자정보통신공학과)
  • Received : 2014.07.30
  • Accepted : 2014.09.15
  • Published : 2014.10.31

Abstract

An numerical technique of impedance boundary condition to improve an efficiency in the process of moment method with CFIE(Combined Field Integral Equation), which is widely used to analyze the scattering property of dielectric scatterers, and results of its cross-validations are presented in this study. Application of the impedance boundary allows to represent the equivalent surface currents of dielectric scatterer depicted by both kinds of electric/magnetic surface currents(Js, Ms) to the single surface current by Js or Ms only. Accuracy of this technique is validated by the existing CFIE and theoretical values such as Mie-series solution and small perturbation scattering model. The computational difference of less than 1 dB was verified within an imaginary part of dielectric constant more than 12, as well.

본 연구에서는 유전체의 산란 특성 분석을 위해 이용되는 CFIE(Combined Field Integral Equation) 모멘트법의 계산효율을 높이기 위해 임피던스 경계면 조건을 적용시킨 수치해석 기법과 그 적용 범위에 대한 분석결과를 제시한다. 임피던스 경계면의 적용은 유전체의 등가 표면 전류(Js)와 등가 표면 자류(Ms)를 하나의 전류 또는 자류 성분으로 표현할 수 있으며, 임피던스 경계면 조건을 적용해 계산효율을 높인 수치해석 기법의 정확도는 기존의 CFIE 모멘트법과 이론값(Mie-series 해법, Small Perturbation 산란모델)을 이용하여 비교/분석하였다. 임피던스 경계면 조건을 적용한 수치해석 기법의 적용 범위 상대유전율 허수부 12 이상에서 1 dB 이내의 계산 편차를 확인하였다.

Keywords

References

  1. M. N. O. Sadiku, Numerical Techniques in Electromagnetics, CRC press, pp. 377-458, 2000.
  2. Y. Oh, Y.-M. Jang, and K. Sarabandi, "Full-wave analysis of microwave scattering from short vegetation: an investigation on the effect of multiple scattering", IEEE Trans. Geosci. Remote Sensing, vol. 40, no. 11, pp. 2522-2526, Nov. 2002. https://doi.org/10.1109/TGRS.2002.805085
  3. J.-H. Hwang, Y. Oh, "Investigation of the effect of boundary edges placed on an infinite conducting surface and effective treatment using virtual vertices", Antenna and Wireless Propagation Letters, vol. 11, pp. 913-916, 2012. https://doi.org/10.1109/LAWP.2012.2212172
  4. Y. Oh, K. Sarabandi, "Improved numerical simulation of electromagnetic wave scattering from perfectly conducting random surface", IEE Proc.-Microw. Antennas Propag., vol. 144, no. 4, pp. 256-260, Aug. 1997. https://doi.org/10.1049/ip-map:19971189
  5. T. B. A. Senior, J. L. Volakis, "Generalized impedance boundary conditions in scattering", IEEE Proc., vol. 79, no. 10, pp.1413-1420, Oct. 1991. https://doi.org/10.1109/5.104216
  6. M. F. Chen, S.-Y. Bai, "Computer simulation of wave scattering from dielectric random surface cylinder case", IGARSS '89, pp. 1318-1321, 1989.
  7. J. C. West, "An implementation of the impedance-boundary combined field integral equation moment method for arbitrarily shape objects", IEEE AP-S 2008, pp. 1-4, 2008.
  8. A. K. Fung, K. S. Chen, Microwave Scattering and Emission Models for Users, Artech House, USA, pp. 331-357, 2010.
  9. G. T. Ruck, et al., Radar Cross Section Handbook, Plenum press, New York, 1970.
  10. F. T. Ulaby, C. Elachi, Radar Polarimetry for Geoscience Applications, Artech House, USA, 1990.
  11. F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing, Active and Passive, Artech House, pp. 2017-2104, 1981.

Cited by

  1. Accuracy improvement of the radar backscatter simulation from sea surface covered by oil slick using fetch-dependent waveheight spectrum: Comparison with the 2007 Heibei Spirit Case in the Yellow Sea vol.51, pp.2, 2016, https://doi.org/10.1007/s12601-016-0020-1