DOI QR코드

DOI QR Code

Some Basic Investigation on Wireless Power Transfer

무선 전력 전송에 관한 기본적인 고찰

  • Park, Jongmin (School of Electrical and Computer Engineering and INMC, Seoul National University) ;
  • Nam, Sangwook (School of Electrical and Computer Engineering and INMC, Seoul National University)
  • 박종민 (서울대학교 전기정보공학부 & 뉴미디어통신공동연구소) ;
  • 남상욱 (서울대학교 전기정보공학부 & 뉴미디어통신공동연구소)
  • Received : 2014.09.12
  • Accepted : 2014.10.17
  • Published : 2014.10.31

Abstract

This paper summarizes the previous research results of fundamental investigation done in SNU on the wireless power transfer. Firstly, the physical limitation of a wireless power transfer using the spherical modes is reviewed. It is found that wireless power transfer depends only on the radiation efficiency of the antennas and the distance between two antennas involved. Secondly, we review the characteristics of WPTS with different sources and compare the performance differences of WPTS according to the source type. In addition, the method for efficient WPTS is suggested when the distance between antennas is varied. Finally, by using the time domain solution of the coupled mode equation, we present an analytic formula which can be used to differentiate Inductive Coupling(IC) and Magnetic Resonance Coupling(MAC) which are often used ambiguously in wireless power transfer system.

본 논문에서는 그 동안 서울대학교에서 수행된 무선 전력 전송 관련 몇 가지 기본적인 연구 결과를 요약 정리하였다. 첫 번째 고찰은 무선전력 전송의 물리적인 한계에 대한 것으로, 주어진 안테나(공진기)를 이용하여 주어진 거리에서 얻을 수 있는 전송효율의 한계를 구면파 모드 이론을 이용하여 구하는 것이다. 두 번째로, 무선 전력 전송에서 사용되는 전력원의 종류에 따른 무선 전력 전송 특성 변화를 연구한 것이다. 더불어, 무선 전력 전송 안테나 사이의 거리가 변할 때 효율적인 전력전송이 가능한 방법을 제안하는 것이다. 마지막으로, 그 동안 무선 전력 전송에서 불분명하게 사용된 자기 유도방식과 자기 공명 방식의 차이를 분명히 하고자 하였으며, 결합 모드 이론을 이용하여 정량적인 구별 기준을 제시하였다.

Keywords

References

  1. A. Karalis, J. D. Joannopoulos, and M. Soljacic, "Efficient wireless non-radiative mid-range energy transfer", Ann. Phys., vol. 323, no. 1, pp. 34-48, Jan. 2008. https://doi.org/10.1016/j.aop.2007.04.017
  2. P. Sample, T. Meyer, and R. Smith, "Analysis, experimental result, and range adaptation of magnetically coupled resonators for wireless power transfer", IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 544-554, Feb. 2011 https://doi.org/10.1109/TIE.2010.2046002
  3. J. Lee, S. Nam, "Fundamental aspects of near-field coupling small antennas for wireless power transfer", IEEE Trans. Antennas Propag., vol. 58, no. 11, pp. 3442-3449, Nov. 2010. https://doi.org/10.1109/TAP.2010.2071330
  4. J. Park, Y. Tak, Y. Kim, Y. Kim, and S. Nam, "Investigation of adaptive matching methods for near-field wireless power transfer", IEEE Transaction on Antennas and Propagation, vol. 59, no. 5, pp. 1769-1773, May 2011. https://doi.org/10.1109/TAP.2011.2123061
  5. J. Park, S. Lee, Y. Tak, and S. Nam, "Simple efficient resonant coupling wireless power transfer system operating at varying distances between antennas", Microwave and Optical Technology Letters, vol. 54, issue 10, pp.2397-2401, Oct. 2012 https://doi.org/10.1002/mop.27062
  6. F. Z. Shen, W. Z. Cui, W. Ma, J. T. Huangful, and L. X. Ran, "Circuit analysis of wirelss power transfer by coupled magnetic resonance", IET International Conf., pp. 602-605, 2009.
  7. S. C. Cripps, RF Power Amplifiers for Wireless Communications,London: Artech-House, ch. 3, 2006.
  8. A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances", Sciencexpress, Jun. 2007
  9. Y. Kim, H. Ling, "Investigation of coupled mode behaviour of electrically small meander antennas", Electron. Lett., vol. 43, no. 23, Nov. 2007.
  10. H. A. Haus, Waves and Fields in Optoelectronics, Prentice-Hall, Englewood Cliffs, NJ, 1984.