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KNOTS IN S3 ADMITTING GRAPH MANIFOLD

DEHN SURGERIES

Sungmo Kang

Abstract. In this paper, we construct infinite families of knots in S3

which admit Dehn surgery producing a graph manifold which consists
of two Seifert-fibered spaces over the disk with two exceptional fibers,

glued together along their boundaries. In particular, we show that for

any natural numbers a, b, c, and d with a ≥ 3 and b, c, d ≥ 2, there are
knots in S3 admitting a graph manifold Dehn surgery consisting of two

Seifert-fibered spaces over the disk with two exceptional fibers of indexes

a, b, and c, d, respectively.

1. Introduction

Let K be a knot in S3, N(K) a regular neighborhood of K in S3, and MK =
S3− intN(K). Let r be a slope, i.e., the isotopy class of an essential unoriented
simple closed curve, on ∂N(K)(= ∂MK). There is a bijection between the set
of slopes and Q ∪ {1/0} in the usual way [11]. In particular, the slope of a
meridian of K corresponds to 1/0. The manifold obtained by r-Dehn filling is
defined to be K(r) = MK ∪ V , where V is a solid torus glued to MK along
∂MK so that r bounds a meridian disk of V .

Let H be a genus two handlebody, k an essential simple closed curve in ∂H,
and H[k] the 3-manifold obtained by adding a 2-handle to H along k. We say
k is primitive in H if H[k] is a solid torus. Equivalently k is conjugate to a free
generator of π1(H). Similarly, we say k is Seifert in H if H[k] is a Seifert-fibered
space and not a solid torus. Note that since H is a genus two handlebody, that
k is Seifert in H implies that H[k] is an orientable Seifert-fibered space over
D2 with two exceptional fibers, or an orientable Seifert-fibered space over the
Möbius band with at most one exceptional fiber.

Suppose K is a knot in S3 which lies in a genus two Heegaard surface Σ of
S3 bounding handlebodies H and H ′. K in Σ is primitive/primitive or double-
primitive if it is primitive with respect to both H and H ′. Similarly, K is
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primitive/Seifert if it is primitive with respect to one of H or H ′, and Seifert
with respect to the other. Also K is Seifert/Seifert or double-Seifert if it is
Seifert with respect to both H and H ′.

In [1] using primitive curves Berge constructed 12 types of primitive/primit-
ive knots and showed that these knots admit lens space surgeries. Dean gen-
eralized Berge’s construction in his thesis [5], and its published version [6].
He introduced Seifert curves and described primitive/Seifert knots which have
Dehn surgery producing a Seifert-fibered space over S2 with three exceptional
fibers.

Let γ be a component of ∂N(K)∩Σ which is an essential simple closed curve
in ∂N(K). Then the isotopy class of γ in ∂N(K) defines the surface slope in
∂N(K). (The surface slope depends on the embedding of K in Σ, so a knot in
S3 may have more than one surface slope.) Since the surface slope intersects a
meridian of K in a single point, it is integral.

Lemma 1.1. Let K be a knot lying in a genus two Heegaard surface Σ of S3

bounding handlebodies H and H ′, and γ a surface slope with respect to this
embedding of K. Then K(γ) ∼= H[K] ∪∂ H ′[K].

Proof. It follows from Lemma 2.1 in [6]. �

Throughout this paper, we denote by S(a1, . . . , an) the Seifert-fibered space
over a surface S with n exceptional fibers of indexes a1, . . . , an.

Lemma 1.1 implies that primitive/primitive knots have a lens space surgery
at a surface slope. While primitive/Seifert knots admit Dehn surgery produc-
ing S2(a, b, c), RP2(a, b), or a connected sum of lens spaces. However, due
to Eudave-Muñoz [7] a connected sum of lens spaces cannot arise for hyper-
bolic primitive/Seifert knots. Hyperbolic primitive/primitive knots and primi-
tive/Seifert knots are completely classified in [3].

Seifert/Seifert knots have Dehn surgery yielding S2(a, b, c, d), RP2(a, b, c),
K2(a, b), or a graph manifold, where K2 is a Klein bottle. However K2(a, b)
cannot happen as Dehn surgery of knots in S3 for homological reasons. In
[9], using Seifert/Seifert knots the author gave infinite families of knots in
S3 which admit Dehn surgery producing S2(a, b, c, d). In this paper, we will
focus on Seifert/Seifert knots admitting a graph manifold Dehn surgery which
consists of D2(a, b) and D2(c, d), glued together along their boundaries. In
[8] Eudave-Muñoz gave an infinite family of hyperbolic knots in S3 admitting
such a graph manifold Dehn surgery with slopes either half-integral or integral.
Another infinite family of hyperbolic knots in S3 was provided by Teragaito in
[12], where each knot in the family admits three graph manifold Dehn surgeries
corresponding to consecutive integers. However, both families of knots in [8]
and [12] admit Dehn surgery producing a graph manifold consisting of D2(a, b)
and D2(c, d) such that one of a, b, c and d is either 2 or 3. In this paper, we
show the following.
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Theorem 1.2. There are infinite families of Seifert/Seifert knots in S3 ad-
mitting a graph manifold Dehn surgery consisting of D2(a, b) and D2(c, d).
Furthermore, for any natural numbers a, b, c, and d with a ≥ 3 and b, c, d ≥ 2,
there are Seifert/Seifert knots in S3 admitting a graph manifold Dehn surgery
consisting of D2(a, b) and D2(c, d).

2. Twisted torus knots which are Seifert/Seifert curves

In this section, using twisted torus knots we construct Seifert/Seifert knots.
Since twisted torus knots are originally introduced by Dean in [6], we go through
the definitions and statements in [6].

Let Ga,b = 〈x, y | xayb 〉 be a group presentation with two generators x, y
and one relator xayb. An element w in the free group 〈x, y 〉 is said to be (a, b)
Seifert-fibered if 〈x, y | w 〉 is isomorphic to Ga,b.

Lemma 2.1. Let k be a simple closed curve in the boundary of a genus two
handlebody H. k is a Seifert curve in H with H[k] = D2(a, b) if and only if k
in π1(H) is (a, b) Seifert-fibered.

Proof. This is Lemma 2.2 in [6]. �

Figure 1. The (7, 3)-torus knot T (7, 3) and 3 parallel copies
3T (1, 1) of the (1, 1)-torus knot.

Now we construct twisted torus knots as follows. Let V1 and V2 be standardly
embedded disjoint unlinked solid tori in S3. Let T (p, q) be the (p, q)-torus knot
which lies in the boundary of V1. Let rT (m,n) be the r parallel copies of the
(m,n)-torus knot T (m,n) which lies in the boundary of V2. Here we may
assume that 1 ≤ q < p and m > 0. Let D1 be the disk in ∂V1 so that T (p, q)
intersects D1 in r disjoint parallel arcs, where 0 < r ≤ p+ q, and D2 the disk
in ∂V2 so that rT (m,n) intersects D2 in r disjoint parallel arcs, one for each
component of rT (m,n). Figure 1 shows the (7, 3)-torus knot T (7, 3), 3 parallel
copies 3T (1, 1) of the (1, 1)-torus knot, and the disks D1 and D2. We excise the
disks D1 and D2 from their respective tori and glue the punctured tori together
along their boundaries so that the orientations of T (p, q) and rT (m,n) align
correctly. The resulting one must yield a knot in the boundary of a genus two
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handlebody H standardly embedded in S3. Such a knot is called a twisted
torus knot, which is denoted by K(p, q, r,m, n). Figure 2 shows the twisted
torus knot K(7, 3, 3, 1, 1).

Figure 2. The twisted torus knot K(7, 3, 3, 1, 1).

Figure 3. The generators of π1(H) and π1(H ′).

Let H ′ = S3 −H and Σ = ∂H = ∂H ′. Then (H,H ′; Σ) forms a genus two
Heegaard splitting of S3. Thus we can regard all of the twisted torus knots as
lying on this genus two Heegaard surface Σ bounding the two handlebodies H
and H ′ of S3 as described above.

Proposition 2.2. The surface slope of a twisted torus knot K(p, q, r,m, n)
with respect to the Heegaard surface Σ is pq + r2mn.

Proof. This is Proposition 3.1 in [6]. �

Let K be a twisted torus knot K(p, q, r,m, n) lying in a genus two Heegaard
splitting (H,H ′; Σ) of S3. Let wp,q,r,m,n and w′p,q,r,m,n be the conjugacy class
of K in π1(H) = 〈x, y〉 and π1(H ′) = 〈x′, y′〉 respectively, where x and y are
generators in H and x′ and y′ are generators in H ′, which are dual to the
cutting disks as described in Figure 3. It easy to see that w′p,q,r,m,n is equal
to wq,p,r,n,m with x replaced by x′ and y replaced by y′. In addition by the
construction of a twisted torus knot, wp,q,r,m,n (w′p,q,r,m,n, resp.) does not
depend on the parameter n (m, resp.). Therefore we often omit n (m, resp.).
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There are more properties in wp,q,r,m,n. For g and h in a group G, we say g
is equivalent to h, denoted by g ≡ h, if there is an automorphism of G carrying
g to h.

Lemma 2.3. The words wp,q,r,m has the following properties.

(1) wp,q,r,m ≡ wp,q′,r,m if q ≡ ±q′ mod p.
(2) wp,q,r,m ≡ wp,q,r′,m if r ≡ ±r′ mod p.

Proof. This is Lemma 3.3 in [6]. �

The following lemma and proposition show which values of the parameters
p, q, r,m, and n produce a primitive or a Seifert curve of K(p, q, r,m, n) with
respect to H.

Lemma 2.4. wp,q,r,m is primitive in π1(H) if and only if

(1) p = 1; or
(2) m = 1 and r = ±1 or ±q mod p.

Proof. This is Theorem 3.4 in [6]. �

For integers p and q, we define q̂−1 be the smallest positive integer congruent
to ±q−1 mod p. For a real number x, x̃ denotes the least integer function. In
[6], Dean gave three criteria to determine which wp,q,r,m are Seifert-fibered in
π1(H).

Proposition 2.5. Let w = wp,q,r,m be a conjugacy class in π1(H) of a twisted
torus knot K(p, q, r,m, n), where 1 ≤ q < p/2 and 1 ≤ r ≤ p.

(1) If m > 1, r ≡ ±1 or ±q mod p, then w is (p,m) Seifert-fibered.
(2) If m = 1, r ≡ ±βq mod p, where 1 < β ≤ p/q with p − βq > 1, then

w is (β, p− βq) Seifert-fibered.

(3) If m = 1, r ≡ ±r̄ mod p, where 1 ≤ r̄ ≤ p̃/q̂−1, with p − rq̂−1 > 1,
then w is (r, p− rq̂−1) Seifert-fibered.

For the twisted torus knot K(p, q, r,m, n) with p/2 < q < p or p < r ≤ p+q,
we can apply Lemma 2.3. Thus we assume that 1 ≤ q < p and 1 ≤ r ≤ p+ q in
Proposition 2.5. According to [6], the first type (1), the second type (2), and the
third type (3) of Seifert-fibered wp,q,r,m (or K(p, q, r,m, n)) in Proposition 2.5
are called hyper Seifert-fibered, middle Seifert-fibered, and end Seifert-fibered
in H, respectively. Note that we can apply the lemma and proposition, and
statements mentioned above by switching p and q, and m and n to say that
w′p,q,r,n (or K(p, q, r,m, n)) is hyper Seifert-fibered, middle Seifert-fibered, or
end Seifert-fibered in H ′.

In this paper, we consider a twisted torus knot K = K(p, q, r,m, n) which is
hyper Seifert-fibered in H and middle Seifert-fibered in H ′. In Section 3 we will
find all possible values of the parameters p, q, r,m, and n for which K is hyper
Seifert-fibered in H and middle Seifert-fibered in H ′. If we let H[K] = D2(a, b)
and H ′[K] = D2(c, d), then by Lemma 1.1, Dehn surgery K(γ) at the surface
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slope γ is either S2(a, b, c, d) or a graph manifold consisting of D2(a, b) and
D2(c, d). However in Section 5 we will show that K(γ) is a graph manifold by
showing that two regular fibers of H[K] and H ′[K] intersect in a single point
in Σ.

3. Finding the parameters p, q, r,m, and n

In this section we find all possible values of the parameters p, q, r,m, and n
for which K(p, q, r,m, n) is hyper Seifert-fibered in H and middle Seifert-fibered
in H ′.

Theorem 3.1. Let K be a twisted torus knot K(p, q, r,m, n) lying in a genus
two Heegaard splitting (H,H ′; Σ) of S3 with 1 ≤ q < p, gcd(p, q) = 1, m > 1,
and 0 < r ≤ p + q. K is hyper Seifert-fibered in H and middle Seifert-fibered
in H ′ if and only if the parameters p, q, r,m, and n satisfy one of the following
values in Table 1. Table 2 describes H[K] and H ′[K] explicitly.

Table 1. All possible values of parameters p, q, r,m, and n for
which K(p, q, r,m, n) is hyper Seifert-fibered in H and middle
Seifert-fibered in H ′.

(p, q, r,m, n) satisfying

I (q + p̄, q, q + 2p̄,m,±1) 0 < p̄ < q, |q − 2p̄| > 1
II (iq + ε, q, iq + 2ε,m,±1) q > 3, i > 0, ε = ±1 (if ε = −1, then i > 1)
III (iq + p̄, (β + 1)p̄+ ε, p+ ε,m,±1) p̄ > 0, β > 1, i > 0, ε = ±1 with p̄+ ε > 1
IV (iq − p̄, (β + 1)p̄− ε, p+ ε,m,±1) p̄ > 0, β > 1, i > 1, ε = ±1 with p̄− ε > 1

Table 2. H[K] and H ′[K] when K is hyper Seifert-fibered in
H and is middle Seifert-fibred in H ′.

(p, q, r,m, n) H[K] H ′[K]

I (q + p̄, q, q + 2p̄,m,±1) D2(p,m) D2(2, |q − 2p̄|)
II (iq + ε, q, iq + 2ε,m,±1) D2(p,m) D2(2, q − 2)
III (iq + p̄, (β + 1)p̄+ ε, p+ ε,m,±1) D2(p,m) D2(β, p̄+ ε)
IV (iq − p̄, (β + 1)p̄− ε, p+ ε,m,±1) D2(p,m) D2(β, p̄− ε)

Proof. We find all possible values of the parameters p, q, r,m, and n which sat-
isfy the following two conditions simultaneously called the “hyper” condition
and the “middle” condition which basically come from (1) and (2) in Proposi-
tion 2.5 respectively:

(1) the “hyper” condition: m > 1, r ≡ ±1 or ±q mod p; equivalently,
r = 1, q, p− 1, p+ 1, p− q, p+ q, or 2p− q.

(2) the “middle” condition: n = ±1, r ≡ ±βp′ mod q, where p ≡ ±p′
mod q with 0 < 2p′ < q, 1 < β < q/p′, and q − βp′ > 1.
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However there are restrictions on the parameters q and r which rule out
some values of the parameters. If q = 1, or r = eq ± 1, eq − p, or p − eq for
some integer e, then by Lemma 2.4 w′p,q,r,n is primitive on H ′. Therefore all
possible r satisfying the hyper condition (1) are as follows;

(1∗) r = p− 1, p+ 1, q with q > 1, or 2p− q.
Regarding the condition (2), we need to find p′ such that p ≡ ±p′ mod q

with 0 < 2p′ < q. Thus if p = iq + p̄, where i > 0 and 0 < p̄ < q, then
finding such a p′ depends on the size of q and p̄. If q > 2p̄, then p′ = p̄ and
w′p,q,r,n = w′p̄,q,r,n is (β, q−βp̄) Seifert-fibered. If q < 2p̄, then we let ¯̄p = q− p̄.
Thus p = (i + 1)q − ¯̄p and p ≡ − ¯̄p mod q with 0 < 2¯̄p < q. Therefore in this
case, p′ = ¯̄p and w′p,q,r,n = w′¯̄p,q,r,n is (β, q − β ¯̄p) Seifert-fibered. Note that

q 6= 2p̄, otherwise since gcd(p, q) = 1, p̄ = 1 and q = 2, which is a contradiction
to q > 2p′ ≥ 2.

As discussed above, we divide the argument into the two cases: q > 2p̄ and
q < 2p̄.

Case 1: Suppose q > 2p̄.
In the “middle” condition (2), p′ = p̄ and thus r ≡ ±βp̄ mod q, equivalently

r = jq ± βp̄ with 1 < β < q/p̄, where j is an integer, and w′p,q,r,n ≡ w′p̄,q,r,n is
(β, q − βp̄) Seifert-fibered. We divide this case into two subcases: r = jq + βp̄
and r = jq−βp̄, and find all possible values of the parameters by investigating
which r also satisfies the values in the condition (1∗), i.e., p + ε, q, or 2p − q,
where ε = ±1.

Subcase 1: Assume r = jq − βp̄. If r = p + ε, then jq − βp̄ = p + ε. Since
p = iq + p̄,

jq − βp̄ = iq + p̄+ ε⇔ (j − i)q = (β + 1)p̄+ ε.

Since the right-hand side is positive, j > i. On the other hand, since w′p̄,q,r,n is
(β, q − βp̄) Seifert-fibered, the index condition implies that q − βp̄ > 1. From
the equation jq − βp̄ = iq + p̄+ ε, q − βp̄ = (i− j + 1)q + p̄+ ε, which implies
that i − j + 1 ≥ 0 and thus j ≤ i + 1. Therefore j = i + 1, q = (β + 1)p̄ + ε
and also p = iq + p̄, r = p + ε. This solution belongs to the type (III) in
Table 1. Furthermore, wp,q,r,m is (p,m) Seifert-fibered and w′p,q,r,n is (β, p̄+ ε)
Seifert-fibered.

If r = q, then jq − βp̄ = q and equivalently (j − 1)q = βp̄. Since the right-
hand side βp̄ is positive, j > 1 and thus q ≤ βp̄, which is a contradiction to
1 < β < q/p̄.

If r = 2p − q, then p < 2q because 0 < r < p + q. In addition i = 1 in the
equation p = iq + p̄, i.e., p = q + p̄. Therefore

jq − βp̄ = 2p− q ⇔ (j − 1)q = (β + 2)p̄.

Since q and p̄ are coprime, q must divide β+2. However the inequality q−βp̄ > 1
implies that q = β+2, p̄ = 1, and thus j = 2. Therefore p = β+3, q = β+2, and
r = β + 4. This solution belongs to the solution (III) by putting p̄ = 1, ε = 1,
and i = 1 there.
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Subcase 2: Assume r = jq + βp̄. If r = p + ε, then jq + βp̄ = p + ε. Since
p = iq + p̄,

jq + βp̄ = iq + p̄+ ε⇔ (j − i)q = (1− β)p̄+ ε.

Since (1−β)p̄+ε ≤ 0, j ≤ i. On the other hand, from the inequality q−βp̄ > 1
and from the equation jq + βp̄ = iq + p̄+ ε, q − βp̄ = (j − i+ 1)q − p̄− ε > 1,
which implies that j − i+ 1 > 0 and thus j > i− 1. Therefore j = i and thus
from the equation (j − i)q = (1− β)p̄+ ε, (1− β)p̄+ ε = 0. This implies that
β = 2, p̄ = 1, and ε = 1. Therefore p = iq + 1 and r = iq + 2, which belongs
to the type (II) in Table 1. Furthermore wp,q,r,m is (p,m) Seifert-fibered and
w′p,q,r,n is (2, q − 2) Seifert-fibered.

If r = q, then jq + βp̄ = q and equivalently (1 − j)q = βp̄. Since the right-
hand side βp̄ is positive, j < 1 and thus q ≤ βp̄, which is a contradiction to
1 < β < q/p̄.

If r = 2p − q, then as handled in the first subcase, p < 2q and p = q + p̄.
Therefore

jq + βp̄ = 2p− q ⇔ (j − 1)q = (2− β)p̄.

Since the right-hand side (2 − β)p̄ is nonpositive, j ≤ 1. However if j ≤ 0,
then q ≤ (β − 2)p̄ < βp̄, which is a contradiction. Therefore j = 1 and thus
β = 2, which implies that p = q + p̄ and r = q + 2p̄. This belongs to the type
(I) in Table 1. Also, wp,q,r,m is (p,m) Seifert-fibered and w′p,q,r,n is (2, q − 2p̄)
Seifert-fibered.

Case 2: Suppose q < 2p̄.
As discussed before, p = (i + 1)q − ¯̄p, where ¯̄p = q − p̄. Since 2¯̄p < q,

in the “middle” condition (2) p′ = ¯̄p and thus r ≡ ±β ¯̄p mod q, equivalently
r = jq ± β ¯̄p with 1 < β < q/ ¯̄p, where j is an integer, and w′p,q,r,n ≡ w′¯̄p,q,r,n is

(β, q − β ¯̄p) Seifert-fibered.
Subcase 1: Assume r = jq − β ¯̄p. If r = p + ε, then jq − β ¯̄p = p + ε. Since

p = iq + p̄ and ¯̄p = q − p̄,

jq − β(q − p̄) = iq + p̄+ ε⇔ (β + i− j)q = (β − 1)p̄− ε.

Since q > p̄, i− j ≤ −1, i.e., j ≥ i+ 1. On the other hand, from the inequality
q−β ¯̄p > 1 and from the equation jq−β ¯̄p = iq+p̄+ε, q−β ¯̄p = (i−j+1)q+p̄+ε >
1, which implies that i − j + 1 ≥ 0 and thus j ≤ i + 1. Therefore j = i + 1
and (β − 1)q = (β − 1)p̄ − ε, equivalently (β − 1)(q − p̄) = −ε. This implies
that β = 2, q − p̄ = 1, and ε = −1. Also p = (i+ 1)q − 1 and r = (i+ 1)q − 2.
With (i + 1) replaced by i, this belongs to the type (II) in Table 1. Moreover
wp,q,r,m is (p,m) Seifert-fibered and w′p,q,r,n is (2, q − 2) Seifert-fibered.

If r = q, then jq − β ¯̄p = q and equivalently (j − 1)q = β ¯̄p. Since the right-
hand side β ¯̄p is positive, j > 1 and thus q ≤ β ¯̄p, which is a contradiction to
1 < β < q/ ¯̄p.

If r = 2p− q, then as before p < 2q and p = q + p̄. Therefore

jq − β(q − p̄) = 2p− q ⇔ (j − β − 1)q = (2− β)p̄.
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Since q and p̄ are coprime and q > β, β = 2 and j = 3. Therefore p = q + p̄,
r = q + 2p̄. This belongs to the type (I) in Table 1. Also wp,q,r,m is (p,m)
Seifert-fibered and w′p,q,r,n is (2, 2p̄− q) Seifert-fibered.

Subcase 2: Assume r = jq + β ¯̄p. If r = p + ε, then jq + β ¯̄p = p + ε. Since
p = iq + p̄ and ¯̄p = q − p̄,

jq + β(q − p̄) = iq + p̄+ ε⇔ (j + β − i)q = (β + 1)p̄+ ε.

Since q > p̄, j < i+ 1. On the other hand,

q − β ¯̄p = (1− β)q + βp̄ = (j − i+ 1)q − p̄− ε > 1.

This implies that j − i + 1 > 0 and thus j > i − 1. Therefore j = i and thus
from the equation (j + β − i)q = (β + 1)p̄+ ε,

βq = (β + 1)p̄+ ε⇔ β(p̄+ ¯̄p) = (β + 1)p̄+ ε.

This implies that p̄ = β ¯̄p − ε and q = (β + 1)¯̄p − ε, and thus p = (i + 1)q − ¯̄p,
q = (β+1)¯̄p−ε, and r = p+ε. With i+1 and ¯̄p replaced by i and p̄ respectively,
this belongs to the type (IV) in Table 1. Also wp,q,r,m is (p,m) Seifert-fibered
and w′p,q,r,n is (β, ¯̄p− ε) Seifert-fibered.

If r = q, then jq + β ¯̄p = q and equivalently (1 − j)q = β ¯̄p. Since the right-
hand side β ¯̄p is positive, j < 1 and thus q ≤ β ¯̄p, which is a contradiction to
1 < β < q/ ¯̄p.

If r = 2p− q, then as before p < 2q and p = q + p̄. Therefore

jq + β(q − p̄) = 2p− q ⇔ (j + β − 1)q = (β + 2)p̄.

Since q and p̄ are coprime and q − β ¯̄p > 1, q = β + 2 and p̄ = j + β − 1. Also
by replacing q by β + 2 in the inequality q − β ¯̄p > 1, we see that (¯̄p− 1)β < 1
and thus ¯̄p = 1 and p̄ = q − 1 = β + 1. From the equation p̄ = j + β − 1,
we obtain that j = 2. Thus the solution is that p = 2β + 3, q = β + 2, and
r = 3β + 4. However this solution belongs to the type (I) by putting q = β + 2
and p̄ = β + 1 there. �

4. R-R diagrams of twisted torus knots

In this section, we give a brief explanation on how to make R-R diagram
of simple closed curves lying in the boundary of a genus two handlebody and
then we transform a twisted torus knot K(p, q, r,m, n) lying in a genus two
Heegaard splitting (H,H ′; Σ) of S3 into R-R diagrams. R-R diagrams were
originally introduced by Osborne and Stevens in [10]. For the definition and
properties of R-R diagrams, see [2].

Suppose two simple closed curves k1 and k2 lie in the boundary of a genus
two handlebody H with {DX , DY } a complete set of cutting disks as shown
in Figure 4. By considering two parallel separating curves, i.e., belt curves as
shown in Figure 4, we decompose the boundary of H into two handles (once-
punctured tori) FX , FY , and one annulus A, so that the two handles FX and
FY contain ∂DX and ∂DY respectively. Figure 5 shows this decomposition.
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Note from Figure 5 that there are three nonparallel bands of connections
(parallel arcs) in FX , each of which consists of one connection, and there are two
nonparallel bands of connections in FY , one of which contains one connection
and the other contains two.

Figure 4. Belt curves bounding an annulus in a genus two surface.

Figure 5. An annulus A and two handles FX and FY .

Figure 6. Merging the parallel connections and the endpoints
of the arcs in the annulus A.
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Merging the parallel connections and thus the endpoints of the connections
leads to mergers of the endpoints of arcs in the annulus A as in Figure 6. We
observe from Figure 6 that after this merger, no pair of the arcs in A have the
same endpoints and thus each arc has label 1.

With all of the information obtained, we can make an immersion of k1 and k2

into S2 which becomes a corresponding R-R diagram. First embed the annulus
A in S2 in such a way that filling its boundary circles of A with disks, say FX
and FY , yields S2 as shown in Figure 7. ∂FX and ∂FY correspond to ∂FX
and ∂FY respectively.

Now we immerse bands of connections in FX and FY into FX and FY as
follows. Since there are three nonparallel bands of connections (parallel arcs)
in FX , and there are two nonparallel bands of connections in FY , these bands
of connections correspond to three diameters in FX and two in FY as shown
in Figure 7. In order to put the labels of the endpoints of each diameter (or
each band of connections), we consider ∂DX and ∂DY in FX and FY . Assume
that all of the curves are oriented. Then the labels of the endpoints of each
diameter on FX(or FY ) implies the intersection number with the cutting disk
DX (or DY ). The labels of the endpoints of each diameter are given in Figure 7.
We call a band of connections with one endpoint labeled by t and the other
by −t as t-connection or (−t)-connection. Sometimes we distinguish between
t-connection and (−t)-connection to indicate which endpoint to emphasize.

Last, we disregard the boundary circles of FX and FY and the negative labels
of the endpoints of each connection in Figure 7 to obtain the corresponding R-
R diagram. Figure 8 shows the curves k1 and k2 in ∂H and the corresponding
R-R diagram. We put the capital letters X and Y in the R-R diagram to
indicate correspondence to the two handles FX and FY respectively and we
call the corresponding handles as X-handle and Y -handle.

Figure 7. Immersion of the curves k1 and k2 into S2 which
becomes a corresponding R-R diagram.

R-R diagrams provide sufficient information about conjugacy classes of the
element represented by a simple closed curve k in π1(H). π1(H) is a free group
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Figure 8. Transformation into R-R diagram.

Figure 9. R-R diagrams of K(7, 3, 3, 1, 1) with respect to H
and H ′.

F (x, y) which is generated by x and y dual to the cutting disks DX and DY

respectively. In Figure 8, k1 and k2 represent the conjugacy classes of xy and
x3y2x2y2 respectively in π1(H).

We are ready to make R-R diagram of a twisted torus knot K = K(p, q, r,m,
n). As an example, we use the twisted torus knot K(7, 3, 3, 1, 1) in Figure 2
lying in the genus two Heegaard splitting (H,H ′; Σ) shown in Figure 3.

First we make R-R diagram of K with respect to the handlebody H. Take
the boundary of the separating disk D1(= D2) as one of the belt curves decom-
posing the boundary of H into two handles FX and FY and use the complete
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set {DX , DY } of cutting disks of H dual to the generators x and y respectively
in π1(H) for labelling the endpoints of each diameter in the R-R diagram. From
the construction of K, K ∩FY consists of r parallel arcs and thus there is only
one band of connections in Y -handle. Also this band intersects the cutting
disk DY m times, the label of the endpoint of the corresponding diameter is
m. Also in Figure 2, K(7, 3, 3, 1, 1) ∩ FX consists of two nonparallel bands of
connections, one of which has two parallel arcs intersecting the cutting disk
DX twice and the other arc intersecting DX three times. By putting all of the
information above together, we have the R-R diagram of K(7, 3, 3, 1, 1) with
respect to H as shown in Figure 9a.

Similarly we make R-R diagram of K with respect to the handlebody H ′.
Take the boundary of the separating disk D1 as one of the belt curves de-
composing the boundary of H ′ into two handles FX′ and FY ′ and use the
complete set {DX′ , DY ′} of cutting disks of H ′ dual to the generators x′ and
y′ respectively in π1(H ′) for labelling the endpoints of each diameter in the
R-R diagram. Note that since connections in each handle only depends on how
they lie in the boundary of a genus two handlebody, R-R diagram of K with
respect to H ′ has exactly the same form as that with respect to H, i.e., the
same number of bands of connections in each handle and the same label of each
edge. Only difference is the intersection numbers with the cutting disks in H
and H ′. Thus by considering the intersection numbers with the cutting disks
DX′ and DY ′ , we have the R-R diagram of K as shown in Figure 9b.

Figure 10. R-R diagram of K(7, 3, 3, 1, 1) with respect to H
and H ′.

Since the two R-R diagrams have the same form, we put these into one R-R
diagram as shown in Figure 10, where a pair of labels of the band of connections
means that the first (second, resp.) coordinate is the label of R-R diagram with
respect to H (H ′, resp.). In general, putting the two R-R diagrams into one
R-R diagram is always doable because parallelism of arcs and connections rely
only on the common boundary Σ of H and H ′. Applying the argument in the
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Figure 11. R-R diagram of K(p, q, r,m, n) with respect to H
and H ′, where as + bt + cu = p, as′ + bt′ + cu′ = q, and
a+ b+ c = r.

example of K(7, 3, 3, 1, 1), we can obtain R-R diagram for a twisted torus knot
K(p, q, r,m, n) as shown in Figure 11, where p = as+bt+cu, q = as′+bt′+cu′,
and r = a+ b+ c.

5. Twisted torus knots admitting graph manifold Dehn surgeries

In Section 3, using a twisted torus knot K = K(p, q, r,m, n) we give four
infinite families of Seifert/Seifert knots. These knots admit at a surface slope
either S2(a, b, c, d) Dehn surgeries or graph manifold Dehn surgeries consisting
of D2(a, b) and D2(c, d). In this section, we show that the four infinite families
of Seifert/Seifert knots in Section 3 admit the latter. In order to show this, we
need to figure out that regular fibers of H[K] = D2(a, b) and H ′[K] = D2(c, d)
intersect in the common boundary Σ of H and H ′. To find regular fibers, we
use R-R diagrams of K.

First, for H[K] K lies in the boundary of H as a hyper Seifert-fibered curve.
The following lemma shows how to find a regular fiber of H[K].

Lemma 5.1. Let K = K(p, q, r,m, n) be a hyper Seifert-fibered curve in the
boundary of a genus two handlebody H. Then the curve τ described in Figure 12
is a regular fiber of H[K] = D2(p,m).

Proof. Recall that the genus two handlebody H is constructed from two stan-
dard solid tori V1 and V2 by gluing them along disks D1 and D2. ∂D1 de-
composes ∂H into two once-punctured tori FX and FY which come from ∂V1

and ∂V2 respectively. Then K ∩ FY consists of r parallel arcs. As shown in
Figure 13 using a band σ in FY which contains the r parallel arcs, and the disk
D1, we can construct a properly embedded separating essential annulus A in
H. In other words, the annulus A can be obtained by bandsumming the disk
D1 with the band σ.
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Figure 12. A regular fiber τ of H[K] = D2(p,m).

Cutting H apart along A yields a genus two handlebody W and a solid
torus Z. Note that Z is homeomorphic to the solid torus V2, and that K lies
completely in the boundary of the genus two handlebody W as a twisted torus
knot K(p, q, r, 1, n′) for some integer n′. Since K(p, q, r,m, n) is hyper Seifert-
fibered, K(p, q, r, 1, n) is primitive in H. Also since the primitivity does not
depend on the parameter n, by Lemma 2.4 K(p, q, r, 1, n′) is primitive in W ,
which implies that W [K] is a solid torus. It follows that H[K] is obtained by
gluing the two solid tori W [K] and Z together along A. So H[K] is Seifert-
fibered over D2 with ∂A as regular fibers and the cores of W [K] and Z as
exceptional fibers. If we let τ be one boundary component of A, then τ is
contained completely in FY and intersects the cutting disk DY m times. Thus
τ appears as in the R-R diagram of K shown in Figure 12.

We further show that p and m are the indexes of the two exceptional fibers
of H[K]. It is clear that the annulus A wraps around the solid torus Z m
times longitudinally, so the core of Z is an exceptional fiber of index m. The
other index can be obtained by computing π1(W [K][τ ]). We can observe that
W [K][τ ] is homeomorphic to W [τ ][K], W [τ ] is a solid torus, and K lies in the
boundary of W [τ ] as a torus knot T (p, q). Thus π1(W [K][τ ]) = π1(W [τ ][K]) =
Zp and then the core of W [K] is an exceptional fiber of index p. �

The following lemma shows the geometric criterion for a simple closed curve
k lying in the boundary of a genus two handlebody H to be Seifert and also
geometric description of a regular fiber of H[k].

Lemma 5.2. If k is a nonseparating simple closed curve on the boundary of
a genus two handlebody H such that H[k] is Seifert-fibered over D2 with two
exceptional fibers, then k has an R-R diagram with the form of Figure 14a,
with n, s > 1, or Figure 14b with n > 0, s > 1, a, b > 0, and gcd(a, b) = 1.
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Figure 13. The separating essential annulus A in H which
can be obtained by bandsumming the disk D1 with the band
σ.

Conversely, if k has an R-R diagram with the form of Figure 14a, with
n, s > 1, or Figure 14b with n > 0, s > 1, a, b > 0, and gcd(a, b) = 1, then
H[k] is Seifert-fibered over D2 with two exceptional fibers of indexes n and s,
or indexes n(a+ b) + b and s respectively.

In addition, the curves τ1 and τ2 in Figure 14a and the curve τ in Figure 14b
are regular fibers of H[k].

Proof. This is Theorem 3.2 in [4]. �

Remark. (1) Algebraically k in Figure 14a represents xnys, while k in Fig-
ure 14b is the product of xnys and xn+1ys with |xnys| = a and |xn+1ys| = b in
π1(H) = 〈x, y 〉. Here |xnys| denotes the total number of appearances of xnys

in the word of k in π1(H), etc. Note that the exponents of x in k in Figure 14b
differ by 1.

(2) The regular fibers τ1 and τ2 in Figure 14a of H[k] represent xn and ys

respectively, while the regular fiber τ in Figure 14b represents ys in π1(H).
(3) If a curve disjoint from k in Figure 14a represents xn (ys, resp.), then

this curve is isotopic to the curve τ1 (τ2, resp.) and thus can be a regular fiber
of H[k]. Similarly if a curve disjoint from k in Figure 14b represents ys, then
this curve is isotopic to the curve τ2 and thus can be a regular fiber of H[k].

We use Lemma 5.2 and the remark above to find a regular fiber of H ′[K]
for all of the types of a twisted torus knot K = K(p, q, r,m, n) in Table 1.

Lemma 5.3. Let K = K(p, q, r,m, n) be a twisted torus knot lying in a genus
two Heegaard splitting (H,H ′; Σ) of S3 such that K is of type I in Table 1,
i.e., (p, q, r,m, n) = (q + p̄, q, q + 2p̄,m,±1) with 0 < p̄ < q and |q − 2p̄| > 1.
Then at a surface slope γ, K(γ) is a graph manifold consisting of D2(p,m) and
D2(2, |q − 2p̄|).
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Figure 14. Two types of R-R diagrams of a Seifert-fibered
curve k with n, s > 1 in Figure 14a, and n > 0, s > 1, a, b > 1,
and gcd(a, b) = 1 in Figure 14b, and regular fibers τ, τ1, and
τ2 of H[k].

Proof. By Theorem 3.1, K is hyper Seifert-fibered in H and middle Seifert-
fibered in H ′ such that H[K] = D2(p,m) and H ′[K] = D2(2, |q − 2p̄|). There-
fore it suffices to show that two regular fibers of H[K] and H ′[K] intersect
once. A regular fiber of H[K] is understood in Lemma 5.1. In other words, it
lies in Σ as shown in Figure 12. So we need to figure out how a regular fiber
of H ′[K] lies in Σ.

We assume that n = 1. For the case where n = −1, the same argument
can be applied. Let q = αp̄ + q̄, where α > 0 and 0 ≤ q̄ < p̄ (if q̄ = 0, then
p̄ = 1 because gcd(p, q)=1). Then p = (α + 1)p̄ + q̄ and r = (α + 2)p̄ + q̄.
Figure 15 shows the torus knot T (p, q) lying in the boundary of a solid torus
V1 standardly embedded in S3 and the disk D1 containing r parallel arcs of
T (p, q) in V1. It follows by figuring out nonparallel bands of connections in
F1(= ∂V1 −D1) that K has an R-R diagram of the form shown in Figure 16a.
Figure 16b shows R-R diagram of K when α = 3.

Using the R-R diagram of K in Figure 16, we will find a regular fiber of
H ′[K]. We record the curve K algebraically by starting the p̄ parallel arcs
entering into the 1-connection in the X ′-handle, i.e., entering into the endpoint
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Figure 15. The torus knot T (p, q) and the disk D1 containing
r parallel arcs of T (p, q), where p = (α + 1)p̄+ q̄, q = αp̄+ q̄,
and r = (α+ 2)p̄+ q̄.

Figure 16. R-R diagram of K.

of the band of connections labeled by 1. In other words, in Figure 16b, we read
off a word of K from the point A lying on p̄ parallel edges entering into the
1-connection in the X ′-handle.

Suppose α > 1. Using the R-R diagram of K when α = 3 in Figure 16b,
we read off a word of K from the point A. The p̄ parallel edges trace out
x′y′x′0y′(x′y′)2 · · · and then after passing the Y ′-handle four times they must
split into two subsets of parallel edges, one of which has q̄ parallel edges and
the other has p̄− q̄ parallel edges. The q̄ parallel edges trace out x′y′x′0y′ while
the p̄ − q̄ parallel edges trace out x′0y′ before they come back to the starting
point A. Therefore it follows that K is the product of two subwords

x′y′x′0y′(x′y′)2x′y′x′0y′ = x′y′2(x′y′)2x′y′2 and

x′y′x′0y′(x′y′)2x′0y′ = x′y′2(x′y′)1x′y′2
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with |x′y′2(x′y′)2x′y′2| = q̄ and |x′y′2(x′y′)1x′y′2| = p̄ − q̄. Similarly, for the
R-R diagram of K in Figure 16a one can see that K is the product of two
subwords

x′y′x′0y′(x′y′)α−1x′y′x′0y′ = x′y′2(x′y′)α−1x′y′2 and

x′y′x′0y′(x′y′)α−1x′0y′ = x′y′2(x′y′)α−2x′y′2

with |x′y′2(x′y′)α−1x′y′2| = q̄ and |x′y′2(x′y′)α−2x′y′2| = p̄− q̄.

Figure 17. Regular fibers τ and τ ′ of H[K] and H ′[K] re-
spectively, which intersect each other in a single point.

We perform a change of cutting disks of the handlebody H ′ underlying the
R-R diagram, which induces an automorphism of π1(H ′) that takes x′ 7→ x′y′−1

and leaves y′ fixed. Then by this change of cutting disks, x′y′2(x′y′)α−1x′y′2

and x′y′2(x′y′)α−2x′y′2 are sent to x′y′x′αy′ and x′y′x′α−1y respectively. We
perform another change of cutting disks of H ′ inducing an automorphism y′ 7→
x′−1y′ to send x′y′x′αy′ and x′y′x′α−1y to y′x′α−1y′ and y′x′α−2y′ respectively.
So only 2 appears in the exponent of y′ and the exponents of x′ differ by 1. By
Lemma 5.2 and the remark below Lemma 5.2, we see that a curve representing
y′2 is a regular fiber of H ′[K]. Consider the curve τ ′ in the original R-R
diagram of K as shown in Figure 17. τ ′ is disjoint from K. Also τ ′ represents
x′y′x′0y′x′y′2(= x′y′2x′y′2) in π1(H ′), which is sent to y′2 after performing the
two automorphisms x′ 7→ x′y′−1 and y′ 7→ x′−1y′ consecutively as performed
to K. Therefore by the remark (3) below Lemma 5.2, τ ′ is a regular fiber of
H ′[K].

If α = 1, we let p̄ = ρq̄+ η, where ρ > 0, 0 ≤ η < q̄ (if η = 0, then q̄ = 1 and
ρ(= p̄) > 2 because gcd(p, q) = 1 and |q − 2p̄| > 1). By replacing p̄ by ρq̄ + η
in the R-R diagram and by recording the curve K algebraically by starting the
q̄ parallel arcs entering into the 1-connection in the X ′-handle, we can observe
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that K is the product of two subwords

x′y′2(x′y′3)ρ−1x′y′3x′y′2 and x′y′2(x′y′3)ρ−1x′y′2

with |x′y′2(x′y′3)ρ−1x′y′3x′y′2| = η and |x′y′2(x′y′3)ρ−1x′y′2| = q̄ − η. We per-
form changes of cutting disks of the handlebody H ′ underlying the R-R dia-
gram twice, which first induce an automorphism x′ 7→ x′y′−3 and second induce
an automorphism y′−1 7→ x′−1y′−1 of π1(H ′). Then x′y′2(x′y′3)ρ−1x′y′3x′y′2

and x′y′2(x′y′3)ρ−1x′y′2 are sent to y′−1x′ρy−1 and y′−1x′ρ−1y′−1 respectively.
Therefore a curve representing y′2 is a regular fiber of H ′[K]. As discussed in
the case where α > 1, the curve τ ′ disjoint fromK shown in Figure 17 represents
x′y′x′0y′x′y′2(= x′y′2x′y′2) in π1(H ′), which is sent to y′2 after performing the
two automorphisms x′ 7→ x′y′−3 and y′−1 7→ x′−1y′−1 consecutively. Therefore
τ ′ is a regular fiber of H ′[K].

In both cases where α > 1 and α = 1, the curve τ ′ shown in Figure 17 is a
regular fiber of H ′[K] and intersects a regular fiber τ of H[K] in a single point
as illustrated in Figure 17. This implies that K(γ) ∼= H[K]∪∂H ′[K] is a graph
manifold consisting of D2(p,m) and D2(2, |q− 2p̄|), where γ is a surface slope.
This completes the proof. �

Notation. Let a0 and b be oriented simple closed curves on a surface which
intersect in a single point. We define a = a0b

m to be an oriented simple closed
curve on the surface obtained by twisting a0 about b m times.

Lemma 5.4. Let K = K(p, q, r,m, n) be a twisted torus knot lying in a genus
two Heegaard splitting (H,H ′; Σ) of S3 such that K is of type II in Table 1,
i.e., (p, q, r,m, n) = (iq + ε, q, iq + 2ε,m,±1) where q > 3, i > 0, ε = ±1 (if
ε = −1, then i > 1). Then at a surface slope γ, K(γ) is a graph manifold
consisting of D2(p,m) and D2(2, q − 2).

Figure 18. The torus knot T (p, q) and the disk D1 containing
r parallel arcs of T (p, q), where p = iq + ε and r = iq + 2ε.
Figures 18a and 18b show when ε = 1 and ε = −1 respectively.
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Figure 19. R-R diagram of K.

Proof. As in Lemma 5.3 we assume that n = 1. We need to figure out how a
regular fiber of H ′[K] lies in Σ. Figure 18 shows the torus knot T (p, q) and
the disk D1 containing r parallel arcs of T (p, q) in V1. It follows by figuring
out nonparallel bands of connections in F1(= ∂V1 −D1) that K has an R-R
diagram of the form shown in Figure 19.

First assume that ε = 1. In the R-R diagram in Figure 19a by recording
the curve K algebraically by starting the q − 1 parallel arcs entering into the
1-connection in the X ′-handle, we see that K is the product of two subwords

x′y′(x′0y′)i−1 = x′y′i and

x′y′(x′0y′)i−1x′0y′x′y′(x′0y′)i−1x′0y′ = x′y′i+1x′y′i+1

with |x′y′i| = q−2 and |x′y′i+1x′y′i+1| = 1. ThereforeK = (x′y′i)q−2(x′y′i+1)2.
This can be shown by using an alternative R-R diagram of K shown in Fig-
ure 20a, where K = K1λ

q−1, K1 = K0λ
i−1
2 and λ = λ1λ

i−1
2 . Note that from

Figure 20a, since the curves K0 and λ1 intersect in a single point, K1 = K0λ
i−1
2
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and λ = λ1λ
i−1
2 intersect in a single point. Therefore K = K1λ

q−1 is a simple
closed curve.

In this description of K in Figure 20a we get by starting from the point P
on K0 that

K = x′y′x′0y′(x′0y′)i−1(x′y′(x′0y′)i−1)q−1x′0y′ = (x′y′i)q−2(x′y′i+1)2.

Figure 20. Alternative R-R diagram of K and regular fibers
τ and τ ′ of H[K] and H ′[K] respectively, which intersect each
other in a single point. Here τ ′ = τ ′0λ

q−1 and λ = λ1λ
i−1
2 .

To see that the alternative R-R diagram in Figure 20a is same as that of
K in Figure 19a, it suffices to show that in both the R-R diagrams of K, the
numbers of the parallel edges connecting the (X,X ′)-handle and the (Y, Y ′)-
handle are equal. In Figure 20a, the number of parallel edges connecting the
(0, 1)-connection in the (X,X ′)-handle and the (−m,−1)-connection in the
(Y, Y ′)-handle (i.e., the points P and Q in Figure 20a) is 1 because only the
curve K0 connects the (0, 1)-connection and the (−m,−1)-connection once.
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The number of parallel edges connecting the (1, 1)-connection in the (X,X ′)-
handle and the (−m,−1)-connection in the (Y, Y ′)-handle is equal to q − 1
because these parallel edges result from the curve λ1 and twisting about λ1 is
performed q − 1 times to make K. The number of parallel edges connecting
the (1, 0)-connection in the (X,X ′)-handle and the (−m,−1)-connection in the
(Y, Y ′)-handle is equal to (i− 1)q + 2 because these parallel edges result from
the curves K0 and λ2, two of which are from K0 and (i− 1)q parallel edges are
from λ2.

We perform two changes of cutting disks of the handlebody H ′ underlying
the R-R diagram consecutively inducing automorphisms first x′ 7→ x′y′−i and
second y′ 7→ x′−q+1y′ of π1(H ′). Then K = (x′y′i)q−2(x′y′i+1)2 is carried to
y′2x′−q+2. This implies that a curve representing x′q−2 or y′2 can be a regular
fiber τ ′ in H ′[K]. We take a curve representing x′q−2 as a regular fiber of
H ′[K].

To find a regular fiber of H ′[K], we use the alternative R-R diagram of K
in Figure 20a, where K = K1λ

q−1, K1 = K0λ
i−1
2 and λ = λ1λ

i−1
2 . Consider a

curve τ ′ = τ ′0λ
q−1, where τ ′0 is given as in Figure 20a. Figure 20a shows that

the curve τ ′0 is disjoint from both K0 and λ2. This implies that τ ′0 is disjoint
from K1 = K0λ

i−1
2 . In addition since K and τ ′ are obtained by twisting K1

and τ ′0 respectively about the same curve λ q − 1 times, τ ′ is disjoint from K.
Algebraically τ ′ represents x′0y′−ix′−1(x′y′(x′0y′)i−1)q−1 = (x′y′i)q−2 in

π1(H ′), which is sent to x′q−2 after performing the two automorphisms x′ 7→
x′y′−i and y′ 7→ x′−q+1y′ consecutively as performed to K. Therefore τ ′ is a
regular fiber of H ′[K] and intersects a regular fiber τ of H[K] in a single point
as illustrated in Figure 20a.

Second assume that ε = −1. Similarly by starting the q − 1 parallel arcs
entering into the 1-connection in the X ′-handle from the R-R diagram in Fig-
ure 19b, we see that K is the product of two subwords

x′y′(x′0y′)i−2x′0y′ = x′y′i and

x′y′(x′0y′)i−2x′y′(x′0y′)i−2 = x′y′i−1x′y′i−1

with |x′y′i| = q−2 and |x′y′i−1x′y′i−1| = 1. ThereforeK = (x′y′i)q−2(x′y′i−1)2.
As in the case that ε = 1, this can be checked by using an alternative R-R di-
agram of K shown in Figure 20b, where K = K1λ

q−1, K1 = K0λ
i−1
2 and

λ = λ1λ
i−1
2 . Then

K = x′0x′x′0y′−1(y′(x′0y′)i−1x′)q−1(y′x′0)i−1 = (x′y′i)q−2(x′y′i−1)2.

As in the case that ε = 1, we can show that the alternative R-R diagram in
Figure 20b is same as that of K in Figure 19b. In Figure 20b, the number of
parallel edges connecting the (1, 1)-connection in the (X,X ′)-handle and the
(−m,−1)-connection in the (Y, Y ′)-handle is q− 1 because these parallel edges
result from the curve λ1 and twisting about λ1 is performed q − 1 times to
yield K. The number of parallel edges connecting the (1, 0)-connection in the
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(X,X ′)-handle and the (−m,−1)-connection in the (Y, Y ′)-handle is equal to
(i − 1)q − 2. This is because (i − 1)q parallel edges result from the curve λ2

but in the process of twisting K0 about λ2, one edge from (i − 1)q parallel
edges is removed and also another edge becomes an edge connecting the (2, 1)-
connection in the (X,X ′)-handle and the (−m,−1)-connection in the (Y, Y ′)-
handle, which implies that there is one edge connecting the (2, 1)-connection
and the (−m,−1)-connection.

Since K = (x′y′i)q−2(x′y′i−1)2, we apply two automorphisms x′ 7→ x′y′−i

and y′−1 7→ x′−q+1y′−1 of π1(H ′) consecutively. Then K = (x′y′i)q−2(x′y′i−1)2

is carried to y′−2x′−q+2. This implies that a curve representing x′q−2 or y′2

can be a regular fiber τ ′ in H ′[K]. As in the case that ε = 1, we take a curve
representing x′q−2 as a regular fiber.

To find a regular fiber of H ′[K], we consider a curve τ ′ = τ ′0λ
q−1, where

τ ′0 is given as in Figure 20b. Since the two curves K1 = K0λ
i−1
2 and τ ′0

are disjoint, and K and τ ′ are obtained by twisting K1 and τ ′0 respectively
about the same curve λ q − 1 times, τ ′ is disjoint from K. Also τ ′ represents
x′−1y′−i(y′(x′0y′)i−1x′)q−1 = (x′y′i)q−2 in π1(H ′), which is sent to x′q−2 af-
ter performing the two automorphisms x′ 7→ x′y′−i and y′−1 7→ x′−q+1y′−1.
Therefore τ ′ is a regular fiber of H ′[K] and intersects a regular fiber τ of H[K]
in a single point as illustrated in Figure 20b.

In both cases where ε = 1 and ε = −1, since τ and τ ′ intersect in a single
point, K(γ) ∼= H[K] ∪∂ H ′[K] is a graph manifold consisting of D2(p,m) and
D2(2, q − 2). �

Figure 21. The torus knot T (p, q) and the disk D1 containing
r parallel arcs of T (p, q), where p = iq + p̄, q = (β + 1)p̄ + ε,
and r = p + ε. Figures 21a and 21b show when ε = 1 and
ε = −1 respectively.

Lemma 5.5. Let K = K(p, q, r,m, n) be a twisted torus knot lying in a genus
two Heegaard splitting (H,H ′; Σ) of S3 such that K is of type III in Table 1,
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i.e., (p, q, r,m, n) = (iq+ p̄, (β+ 1)p̄+ ε, p+ ε,m,±1) where p̄ > 0, β > 1, i > 0,
and ε = ±1 with p̄+ε > 1. Then at a surface slope γ, K(γ) is a graph manifold
consisting of D2(p,m) and D2(β, p̄+ ε).

Figure 22. R-R diagram of K.

Proof. As before we assume that n = 1. Figure 21 shows the torus knot T (p, q)
and the disk D1 containing r parallel arcs of T (p, q) in V1 and Figure 22 shows
R-R diagram of K. Now we will find a regular fiber of H ′[K].

First assume that ε = 1. In the R-R diagram in Figure 22a by recording the
curve K algebraically by starting the q − 1(= (β + 1)p̄) parallel arcs entering
into the 1-connection in the X ′-handle, we see that K is the product of three
subwords

x′y′(x′0y′)i−1 = x′y′i, x′y′(x′0y′)i−1x′0y′ = x′y′i+1, and

x′y′(x′0y′)i−1x′0y′x′y′(x′0y′)i = x′y′i+1x′y′i+1
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Figure 23. Alternative R-R diagram of K and regular fibers
τ and τ ′ of H[K] and H ′[K] respectively, which intersect each

other in a single point. Here τ ′ = τ ′1λ
β
1 , where τ ′1 = τ ′0λ

i−1
3

and λ1 = λ2λ
i−1
3 .

with |x′y′i| = βp̄, |x′y′i+1| = p̄ − 1, and |x′y′i+1x′y′i+1| = 1. Therefore K =
((x′y′i)β(x′y′i+1))p̄x′y′i+1. This is also guaranteed from an alternative R-R
diagram of K shown in Figure 23a, where K = K1λ

p̄, where K1 = K0λ
i−1
3 ,

λ = λ∗0λ
β
1 , λ∗0 = λ0λ

i−1
3 , and λ1 = λ2λ

i−1
3 . Note from Figure 23a that since

K0 intersects λ0 once and doesn’t intersect λ2, K1 = K0λ
i−1
3 intersects λ∗0 =

λ0λ
i−1
3 once and doesn’t intersect λ1 = λ2λ

i−1
3 . This implies that K1 intersects

λ = λ∗0λ
β
1 in a single point, which shows that K = K1λ

p̄ is a simple closed curve.
The way of proving that the R-R diagram of K in Figure 23a is same as

that of K in Figure 22a parallels that of proving that the two R-R diagrams of
K in Figure 19a and in Figure 20a are identical in Lemma 5.4. Since we twist
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about λ3 ((β+1)p̄+1)(i−1) times and about λ0 p̄ times, and there is one edge
induced from the curve K0, there are a total of ((β + 1)p̄+ 1)(i− 1) + p̄+ 1 =
(i− 1)q + p̄+ 1 parallel edges connecting the (1, 0)-connection in the (X,X ′)-
handle and the (−m,−1)-connection in the (Y, Y ′)-handle. Similarly, there are
a total of (β+1)p̄ = q−1 parallel edges connecting the (1, 1)-connection in the
(X,X ′)-handle and the (−m,−1)-connection in the (Y, Y ′)-handle, βp̄ of which
come from the curve λ2 and the other p̄ parallel edges come from the curve
λ0. There is only one edge connecting the (0, 1)-connection in the (X,X ′)-
handle and the (−m,−1)-connection in the (Y, Y ′)-handle, which results from
the curve K0.

From the alternative description of K in Figure 23a, we see that

K = x′y′x′0(y′x′0)i−1(y′x′y′(x′0y′)i−1(x′y′(x′0y′)i−1)βx′0)p̄y′

= ((x′y′i)β(x′y′i+1))p̄x′y′i+1.

By performing two automorphisms x′ 7→ x′y′−i and y′ 7→ x′−β−1y′ of
π1(H ′) consecutively, we see that K = ((x′y′i)β(x′y′i+1))p̄x′y′i+1 is carried
to y′p̄+1x′−β . This implies that a curve representing x′β or y′p̄+1 can be a
regular fiber of H ′[K]. We take a curve representing x′β as a regular fiber.

To find a regular fiber of H ′[K], we use the alternative R-R diagram of K
in Figure 23a, where a curve τ ′0 is given. Using the curve τ ′0, we can make a

regular fiber of H ′[K]. Consider a curve τ ′ = τ ′1λ
β
1 , where τ ′1 = τ ′0λ

i−1
3 and

λ1 = λ2λ
i−1
3 . We show that the curves K and τ ′ are disjoint. To see this, it

suffices to show that τ ′ is disjoint from both K1 and λ because K = K1λ
p̄,

where K1 = K0λ
i−1
3 , λ = λ∗0λ

β
1 , λ∗0 = λ0λ

i−1
3 , and λ1 = λ2λ

i−1
3 . We see from

Figure 23a that the curves τ ′0 and λ2 do not intersect K0. Therefore τ ′1 = τ ′0λ
i−1
3

and λ1 = λ2λ
i−1
3 do not intersect K1 = K0λ

i−1
3 , which implies that τ ′ = τ ′1λ

β
1

is disjoint from K1. Figure 23a shows that τ ′0 doesn’t intersect λ0. Therefore

τ ′1 = τ ′0λ
i−1
3 doesn’t intersect λ∗0 = λ0λ

i−1
3 . This implies that τ ′ = τ ′1λ

β
1 is

disjoint from λ = λ∗0λ
β
1 .

Algebraically, τ ′ represents x′0(y′x′0)i−1y′(x′y′(x′0y′)i−1)βx′0y′−i=(x′y′i)β .
This is sent to x′β after the two automorphisms x′ 7→ x′y′−i and y′ 7→ x′−β−1y′

of π1(H ′) as performed to K. Since τ ′ is disjoint from K and represents x′β , τ ′

is a regular fiber of H ′[K]. Figure 23a guarantees that the two regular fibers τ
and τ ′ of H[K] and H ′[K] intersect in a single point.

Second assume that ε = −1. Similarly by starting the q − 1 parallel arcs
entering into the 1-connection in the X ′-handle from the R-R diagram in Fig-
ure 22b, we see that K is the product of three subwords

x′y′(x′0y′)i−1 = x′y′i, x′y′(x′0y′)i−1x′0y′ = x′y′i+1, and

x′y′(x′0y′)i−1x′y′(x′0y′)i−1 = x′y′ix′y′i

with |x′y′i| = βp̄ − 2, |x′y′i+1| = p̄ − 1, and |x′y′ix′y′i| = 1. Therefore K =
(x′y′i+1(x′y′i)β)p̄−1(x′y′i)β , which can also be verified as proved in the case that
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ε = 1 by using an alternative R-R diagram of K shown in Figure 23b, where

K = K1λ
p̄−1, where K1 = K0λ

β
1 , λ = λ∗0λ

β
1 , λ∗0 = λ0λ

i−1
3 , and λ1 = λ2λ

i−1
3 .

Also to show that the alternative R-R diagram of K is same as that of K in
Figure 22b, we can apply the similar arguments as in the proof in Lemma 5.4
which shows that the two R-R diagrams of K in Figure 19b and in Figure 20b
are identical.

By performing two automorphisms x′ 7→ x′y′−i and y′ 7→ y′x′−β−1 of π1(H ′)
consecutively, it follows that (x′y′i+1(x′y′i)β)p̄−1(x′y′i)β is carried to x′βy′p̄−1.
This implies that a curve representing x′β or y′p̄−1 can be a regular fiber τ ′ in
H ′[K]. We take a curve representing x′β as a regular fiber.

Using the curve τ ′0 depicted in Figure 23b, we make a curve τ ′ = τ ′1λ
β
1 ,

where τ ′1 = τ ′0λ
i−1
3 and λ1 = λ2λ

i−1
3 . We observe from Figure 23b that the

curve τ ′0 doesn’t intersect K0 and λ0, and λ3 doesn’t intersect K0. Therefore

τ ′1 = τ ′0λ
i−1
3 is disjoint from K0 and λ∗0 = λ0λ

i−1
3 . This implies that τ ′ = τ ′1λ

β
1

is disjoint from K1 = K0λ
β
1 and λ = λ∗0λ

β
1 . Thus the curve τ ′ is disjoint from

the curve K.
Algebraically, τ ′ represents x′0(y′x′0)i−1y′(x′y′(x′0y′)i−1)βx′0y′−i=(x′y′i)β .

This is sent to x′β after the two automorphisms x′ 7→ x′y′−i and y′ 7→ y′x′−β−1

of π1(H ′) as performed to K. Since τ ′ is disjoint from K and represents x′β ,
τ ′ is a regular fiber of H ′[K]. From Figure 23b the two regular fibers τ and τ ′

of H[K] and H ′[K] respectively intersect in a single point.
In both cases where ε = 1 and ε = −1, since the regular fibers τ and τ ′

respectively intersect in a single point, K(γ) ∼= H[K] ∪∂ H ′[K] is a graph
manifold consisting of D2(p,m) and D2(β, p̄+ ε). �

Figure 24. The torus knot T (p, q) and the disk D1 containing
r parallel arcs of T (p, q), where p = iq − p̄, q = (β + 1)p̄ − ε,
and r = p + ε. Figures 24a and 24b show when ε = 1 and
ε = −1 respectively.
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Figure 25. R-R diagram of K.

Lemma 5.6. Let K = K(p, q, r,m, n) be a twisted torus knot lying in a genus
two Heegaard splitting (H,H ′; Σ) of S3 such that K is of type IV in Table 1,
i.e., (p, q, r,m, n) = (iq− p̄, (β+ 1)p̄− ε, p+ ε,m,±1) where p̄ > 0, β > 1, i > 1,
and ε = ±1 with p̄−ε > 1. Then at a surface slope γ, K(γ) is a graph manifold
consisting of D2(p,m) and D2(β, p̄− ε).

Proof. Figure 24 shows the torus knot T (p, q) and the disk D1 containing r
parallel arcs of T (p, q) in V1 and Figure 25 shows R-R diagram of K. The R-R
diagram of K in Figure 25 is same as that of K in Figure 22 which is of type
III, with q − p̄ replace by p̄. So the proof is similar as that in Lemma 5.5. �

By Lemmas 5.3, 5.4, 5.5, and 5.6 we obtain the main theorem of this paper
as follows.

Theorem 5.7. There are infinite families of Seifert/Seifert knots in S3 ad-
mitting a graph manifold consisting of D2(a, b) and D2(c, d). Furthermore,
for any natural numbers a, b, c, and d with a ≥ 3 and b, c, d ≥ 2, there are
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Seifert/Seifert knots in S3 admitting a graph manifold consisting of D2(a, b)
and D2(c, d).
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