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ABSOLUTELY PURE REPRESENTATIONS OF QUIVERS

Mansour Aghasi and Hamidreza Nemati

Abstract. In the current paper we study absolutely pure representa-

tions of quivers. Then over some nice quivers including linear quivers
some sufficient conditions guaranteeing a representation to be absolutely

pure is characterized. Furthermore some relations between flatness and

absolute purity is investigated. Finally it is shown that the absolutely
pure covering of representations of linear quivers (including A−∞, A+

∞ and

A∞∞) by R-modules whenever R is a coherent ring exists.

1. Introduction

The study of quivers and their representations by modules is a topic in
temporary research in module and ring theory. In homological point of view
it is important to consider some canonical classes of objects providing tools to
compute cohomology. So far the class of projective representations of quivers in
[3], of injective representations of quivers in [5], of flat representations of quivers
in [6], of projective and injective representations of quivers with n edges in [11],
and of pure injective representations in [8] have been widely studied.

Absolutely pure R-modules were first considered by Admas in [1] and by
Maddox in [9]. Megibben in [10] and Stenström in [13] and many other authors
have continued the study of absolutely pure R-modules. Pinzon in [12] proved
the existence of absolutely pure covering of R-modules. This paper is scheduled
to study absolute purity in the category of representations of quivers. We
first consider a kind of purity in the category of representations introduced
and studied in [8]. Then by an absolutely pure representation we mean a
representation X such that every exact sequence

0→ X → Y → Z → 0

is pure. Notice that based on the argument in the introduction in [8], it is
possible that the standard notion of purity in locally finitely presented cate-
gories and the kind of purity in [8] are two different notions. However it is not
hard to show that the categorical purity is stronger than the other notions.
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Over a quiver with finite number of vertices, these two notions of purity are
equivalent. A representation X is called Fp-injective if every monomorphism
0 → X → Y of representations is a pure monomorphism. In general the class
of Fp-injective representations possibly differs from the class of absolutely pure
representations.

We prove that the class of absolutely pure representations in Rep(Q,R),
i.e., Abs(Q,R), has some nice properties such as being closed under direct
sum, direct limits and pure subrepresentations. Then we use these to show
that Abs(Q,R) where R is a coherent ring is a filtration class and hence is a
covering class.

2. Preliminaries

A quiver Q is simply a directed graph. More precisely a quiver Q is a
fourtuple Q = (V,E, s, t) where V is the set of vertices, E is the set of arrows,
and s, t : E → V are two maps where for each arrow a ∈ E, s(a) and t(a)
assign to a, the initial and terminal vertex of a respectively.

A representation X by R-modules of a given quiver Q is a functor X : Q→
R −Mod where Q is considered as an small category whose objects are ver-
tices of Q and paths are its homomorphisms. X is determined by assigning a
module X (v) to any vertex v ∈ V and a homomorphism X (a) : X (v)→ X (w)
to each arrow a : v → w. A morphism X → Y is a natural transformation. A
representation P of Q is said to be finitely presented if the functor HomQ(P,−)
preserves direct limits. The representations of a quiver Q by R-modules, de-
noted by Rep(Q,R) is a Grothendieck category with enough projectives.

A quiver Q is called right(left) rooted if there is no path of the form • →
• → · · · (· · · → • → •).

For any quiver Q = (V,E), by Qop = (V,Eop) we mean a quiver with the
same set of vertices and reversed arrows, i.e., if a : v → w is an arrow in Q, then
aop : w → v is the corresponding arrow in Qop. Notice that a quiver Q is left
rooted if and only if Qop is right rooted. For a given representation X of a quiver
Q, X+ is a representation in Rep(Qop, R) such that X+(v) = Hom(X (v),Q/Z).

The following two theorems are chosen from [6] and [5] respectively.

Theorem 2.1. For a left rooted quiver Q, a representation F is flat if and
only if the following hold.

(i) F (v) is a flat R-module for every vertex v in Q,
(ii) For all vertices v of Q, the homomorphism gv : ⊕t(a)=vF (s(a))→ F (v)

induced by F (s(a))→ F (v) is a pure monomorphism.

Proof. See Theorem 3.7 in [6]. �

Theorem 2.2. Let Q be a left rooted quiver. Then F is a flat representation of
Q = (V,E) if and only if F+ is an injective representation of Qop = (V,Eop).

Proof. See Corollary 6.7 in [5]. �
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A continuous chain (Mα|α ≤ σ) of subrepresntations of a representation
M whenever σ is an infinite ordinal number is called a filtration for M. In
this case we have M0 = 0, for α ≤ β, Mα ⊆ Mβ , and Mβ = ∪α≤βMα

whenever β is a limit ordinal and Mσ =M. For a class C of representations
such a filtration is said to be a C-filtration if for every α < σ the represntation
Gα+1/Gα is isomorphic to an element of C. Some applications of filtrations to
relative homological algebra and an exact definition of filtrations are presented
in [2].

Let F be a class of representations. A morphism φ : F →M of representa-
tions with F ∈ F is called an F- precover of M if the sequence Hom(F ′, F )→
Hom(F ′,M) of abelian groups for any F ′ ∈ F is an epimorphism. φ is called
F-cover if it has the extra property that φf = φ holds only when f : F → F is
an authomorphism.

3. C-absolutely pure representations

The category of representations of a quiver by modules is a locally finitely
presented category. So one can consider a canonical definition of purity in this
category. Also a possibly different notion of purity is introduced in [8]. Finally
another notion of purity is related to vertices.

An exact sequence ε : 0→ X → Y → Z → 0 is called;

(1) categorically pure if

0→ Hom(F ,X )→ Hom(F ,Y)→ Hom(F ,Z)→ 0

is exact for each finitely presented representation F ,
(2) pure if 0→ Z+ → Y+ → X+ → 0 splits,
(3) componentwise pure (or C-pure) if 0→ X (v)→ Y(v)→ Z(v)→ 0 is a

pure exact sequence of R-modules for each vertex v ∈ V .

The next proposition is a comparison between the categorical notion and
other notions of purity.

Proposition 3.1. In Rep(Q,R), i.e., the category of representations of a
quiver Q, categorically pure short exact sequences are pure exact, that is,

Purecat ⊆ Pure+.

Proof. Let ε : 0 → X → Y → Z → 0 be a pure categorical short exact
sequence. Since Rep(Q,R) is locally finitely presented, one can consider Z as
a direct limit of some finitely presented representations lim−→Zi and hence ε can

be written as lim−→ εi for some split short exact sequences εi. By [8, Proposition

2.5], each εi is pure exact and any direct limit of pure exact sequences is pure
exact. �

Remark 3.2.

(1) Consider the quiver • → • and two representations M : M ⊕M id→
M ⊕M and M′ : M

ι→ M ⊕M where ι is the canonical inclusion.
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Although β = (ι, id) is a monomorphism of representations with ι and
id pure monomorphisms, β is not a pure monomorphism of represen-
tations. This shows that componentwise purity does not yield purity
in Rep(Q,R).

(2) WhenQ has a finite number of vertices the path ringRQ has an identity
and Rep(R,Q) and RQ-modules are equivalent categories. In this case
any pure exact sequence of representations is categorically pure.

Let Q be any quiver and letM be a representation of Q. M is called compo-
nentwise absolutely pure ifM(v) is an absolutely pure R-module for any v ∈ V .
We denote the class of all componentwise absolutely pure representations by
Cabs(Q). Componentwise flat representations, Cflat(Q), is considered in [7].
The concepts of Cflat(Q) and Cabs(Q) are not the categorical definitions of
flatness and absolute purity but they are relevant definitions when we consider
Rep(Q,R) as the category of presheaves on a topological space.

Here we state Lemma 4.4 from [7].

Lemma 3.3. Let ℵ be an infinite cardinal such that ℵ ≥ sup{|R|, |V |, |E|}
and M be a representation of Q. Then for each x ∈ M , there exists a C-pure
subrepresentation P of M such that x ∈ P and |P | ≤ ℵ.

Theorem 3.4. Let R be a coherent ring. Then the class of all componentwise
absolutely pure representations, i.e., Cabs(Q) is a covering class.

Proof. Let M be a representation and x ∈ M . Then by Lemma 3.3 there
exists a C-pure representation P1 ⊆ M such that |P1| ≤ ℵ. Hence P1 and
M/P1 belong to Cabs(Q). Taking any element x1 ∈ M/P1 we can find a C-
pure subrepresentation P2/P1 containing x1 belonging to Cabs(Q) such that
|P2/P1| ≤ ℵ. Both of P1 and P2/P1 belong to Cabs(Q) and hence P2 and
M/P2 belong to Cabs(Q). For an ordinal α and considering M/Pα, one can
use the same procedure to get a C-pure subrepresentation Pα ⊆ Pα+1 ⊆ M
such that |Pα+1/Pα| ≤ ℵ. For a limit ordinal β set Pβ = lim−→α<βPα. Then

(Pα : α < λ) for a suitable cardinal number λ is a C-filtration for M . It is not
hard to see that any representation M with a C-filtration belongs to Cabs(Q).
Hence Cabs(Q) is a covering class by [2, Theorem 5.5]. �

4. Absolutely pure representations

An R-module M is called absolutely pure if every short exact sequence

0→M → N → P → 0

is pure. Absolutely pure modules were first studied by Adams in [1] and devel-
oped by several authors such as Megibben in [10], Maddox in [9] and Stenström
in [13], etc. Recently Pinzon in [12] has proved that the category of R-modules
admits absolutely pure coverings. In this section we study absolutely pure
representations of quivers.
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Definition. Let Q be any quiver and Rep(Q,R) denotes the category of repre-
sentations of Q in R-Mod. A representation X is called absolutely pure if every
exact sequence 0→ X → Y is pure. X is called componentwise absolutely pure
if X (v) is an absolutely pure R(v)-module for each vertex v ∈ Q.

Example 1. It will be proved that any absolutely pure representation is com-
ponentwise absolutely pure. Let Q : • → • be a quiver and M 6= 0 be an
absolutely pure R-module with injective envelope E. Then 0 → M is compo-
nentwise absolutely pure. It is not difficult to show that (0→M)→ (E → E)
is a monomorphism which is not pure. Hence 0 → M is not absolutely pure.

Representations M
id→ M and 0 → M are examples of absolutely pure repre-

sentations of Q.

By using Example 2.4 in [8] one can show that any componentwise absolutely
pure representation X where X (v) → X (w) is a split epimorphism for each
arrow v → w is absolutely pure.

Lemma 4.1. The class of all absolutely pure representations is closed under
taking pure sub-object.

Proof. Suppose that X be a pure subrepresentation of an absolutely pure repre-
sentation Y and we are given an inclusion 0→ X → A. Let P be the push-out
of X → Y and X → A. Then since X ⊆ Y ⊆ P is pure, so is the composition
X ⊆ A ⊆ P. Hence X ⊆ A is pure by [8, Proposition 2.5 (ii)]. �

Theorem 4.2. The following are equivalent.

(1) X is absolutely pure.
(2) X is a pure sub-representation of an absolutely pure representation.
(3) X is a pure sub-representation of an injective representation.

Proof. Follows by using definitions and applying Lemma 4.1. �

Lemma 4.3. Let X be an absolutely pure representation, Then

(i) X (v) is absolutely pure for each vertex v of Q.
(ii) For any vertex v of Q, the morphism

X (v)→ X (t(a))

is a pure epimorphism for each arrow a in Q.

Proof. X is a pure sub-representation of an injective representation I. Thus
X (v) is a pure submodule of an injective module I(v). Let E be the injective
envelope of X , a : v → w be an arrow in Q and consider the following diagram.

0 // X (v)

��

f
// E(v)

��

// L(v)

��

// 0

0 // X (w)
g
// E(w) // L(w) // 0
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Since X is absolutely pure, 0 → L+ → E+ → X+ → 0 splits. Hence the
diagram

0 // L+(w)

��

// E+(w)

β

��

g+
// X+(w)

γ

��

// 0

0 // L+(v) // E+(v)
f+

// X+(v) // 0

splits, i.e., there exist maps f ′ and g′ such that f+f ′ = 1X+(v), g
+g′ = 1X+(w)

and βg′ = f ′γ. Since βg′ is monic, so is f ′γ. Hence γ is a monomorphism.
This means that X (v) → X (w) is an epimorphism. We can consider a homo-
morphism β′ : E+(v) → E+(w) with β′β = 1E+(w) because E is injective. By

setting γ′ := g+β′f ′ we have

γ′γ(x) = g+β′f ′γ(x) = g+β′βg′(x) = x

for each x ∈ X+(w). This implies that X (v) → X (w) is a pure epimorphism.
�

Theorem 4.4. Let Q be a quiver and X be an absolutely pure representation
of Q. Then

(i) X (v) is absolutely pure for each vertex v of Q.
(ii) For any vertex v of Q, the morphism

X (v)→
∏

s(a)=v

X (t(a))

induced by X (v)→ X (t(a)) is a pure epimorphism.

Proof. By the properties of product any morphism X (v) → X (w) (where a :
v → w is an arrow in Q) factors through X (v) →

∏
s(a)=v X

(
t(a)

)
→ X (w).

Considering the following commutative diagram

E+(wi)

γwi

��

fwi

// X+(wi) //

αwi

��

0

⊕t(a)=vE+(s(a))

η

��

h
// ⊕t(a)=vX+(s(a)) //

β

��

0

E+(v)
g

// X+(v) // 0

all maps except β are split homomorphisms. Since X is absolutely pure,
g′βαwi = ηγwif

′
wi

. Set β′ := hη′g′ and let X be an arbitrary element in

⊕wi
X+(wi), then X =

∑k
i=1 αwi

(xi) for some suitable integer k. We observe
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that

β′β(X) = hη′g′β(

k∑
i=1

(αwi
(xi)) =

k∑
i=1

hη′g′β
(
αwi

(xi)
)

=

k∑
i=1

hη′ηγwi
f ′wi

(xi) =

k∑
i=1

hγwi
f ′wi

(xi) =

k∑
i=1

αwi
fwi

f ′wi
(xi) = X.

Thus β′β = 1⊕X+(wi) and hence β is an split monomorphism. �

Remark 4.5. A representations satisfying in the conditions of the above theorem
does not need necessarily to be absolutely pure. The next example which is
presented in [5, Example 3] shows that a representation of a non-right rooted
quiver satisfying some conditions guaranteeing injectivity of representations
over right rooted quivers may fail to be injective. It confirms our claim.

Example 2. Let us consider the non-right rooted quiver

and the category of representations of Q by K-vector spaces (K is a field). In
this case Rep(Q,K) is equivalent to the category K[x]-mod. The representation

K[x, x−1]
x→ K[x, x−1] satisfies in conditions (i) and (ii) of Theorem 4.4, but

K[x, x−1] is not injective (and hence is not absolutely pure) as a K[x]-module
(over the Noetherian ring K[x], the notions of absolute purity and injectivity
are equivalent).

Definition 2.2 in [5] motivated us to consider the following definition.

Definition. A quiver Q is called source absolutely pure representation quiver
if for any R, absolutely pure representations of Rep(Q,R) can be characterized
in terms of conditions (i) and (ii) of Theorem 4.4. We will denote the class of
all source absolutely pure representation quivers by I.

Let Q denote the class of quivers such that Q does not contain • ← • → •.
This is a wide class of quivers containing many important classes of quivers
such as linear quivers and dual trees. By a dual tree we mean a quiver Q with
a vertex v such that for any vertex w in Q, there exists a unique path from w
to v. We will show that all quivers in this class are source absolutely pure.

Proposition 4.6. Let Q be the quiver v → w and X be a representation of Q.
X is absolutely pure if and only if X (v) and X (w) are both absolutely pure and
X (v)→ X (w) is a pure epimorphism.

Proof. The only if part is proved in Lemma 4.3. Conversely suppose that X is a
representation satisfying the conditions (i) and (ii). We should show that X is
a pure subrepresentation of an injective representation. Let E be the injective
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envelope of X . Then consider the following diagram.

0 // L+(w)

��

// E+(w)

α

��

v1 // X+(w)

f

��

// 0

0 // L+(v) // E+(v)
v0
// X+(v) // 0

We should show that there are maps t0 and t1 such that v1t1 = 1X+(w), v0t0 =

1X+(v) and αt1 = t0f . Since the top row splits, there is a map t1 : X+(w) →
E+(w) such that v1t1 = 1X+(w). By splitness of the second diagram, there is

a map γ : ker g → E+(v) such that v0γ = i where g is a map satisfying gf =
1X+(w) and i : ker g → X+(v) is the canonical inclusion. Set t0 := γ ◦ π + αt1g

where π : X+(v)→ ker g is the canonical projection. Then

t0f(x) = γ ◦ π(f(x)) + αt1g(f(x)) = αt1(x)

for each x ∈ X+(w). Also we have

v0t0(a+ b) = v0γπ(a+ b) + v0αt1g(a+ b) = v0γ(b) + v0αt1g(a) = a+ b

where a ∈ Imf , b ∈ ker g and X+(v) = ker g ⊕ Imf . �

The procedure can be generalized to An : • → • → · · · → • for each n ∈ N.
For the infinite line A−∞ : · · · → • → • and dual tree cases by using the axiom
of choice, we can apply this procedure. Hence right rooted quivers in Q are all
source absolutely pure.

A quiver Q with a vertex v is called a finite tree if it has a finite set of
vertices and for each vertex w in Q there is a unique path from v to w.

Proposition 4.7. Every finite tree quiver is a source absolutely pure represen-
tation quiver.

Proof. The proof is similar to the proof of Proposition 4.6. �

Let us present some relations between flatness and absolute purity. These
relations may help us to characterize some source absolutely pure representation
quivers whenever R is a coherent ring.

Theorem 4.8. Let Q be a left rooted quiver. Then following are equivalent.

(1) X is a flat representation.
(2) X+ is an injective representation.
(3) X+ is an absolutely pure representation.

Proof. (1)⇒ (2)⇒ (3) follows directly.
(3) ⇒ (1): Let X be a representation with X+ absolutely pure and we are
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given an exact sequence 0→ Z → Y → X → 0. In the diagram

0 // Z

��

// Y

��

// X

��

// 0

0 // Z++ // Y++ // X++ // 0

the second row splits and columns are all pure. Hence the top row is pure. So
by Theorem 2.13 in [8], X is flat. �

Proposition 4.9. Let Q be a right rooted quiver and X be absolutely pure.
Then the following are equivalent.

(1) R is a coherent ring.
(2) X+ is flat.
(3) X++ is injective.

Proof. It is an immediate corollary of a similar result in the category of R-
modules and Proposition 4.4. �

Proposition 4.10. Let R be a coherent ring and X be a representation of a
right rooted quiver Q satisfying the following conditions.

(i) X (v) is absolutely pure for each vertex v of Q.
(ii) For any vertex v of Q, the morphism

X (v)→
∏

s(a)=v

X (t(a))

induced by X (v)→ X (t(a)) is a pure epimorphism.

Then X is absolutely pure.

Proof. This follows by Proposition 4.8 and Proposition 4.9. �

The above proposition is also true for some non-right rooted quivers. For
example for the quivers

A+
∞ : • → • → • → · · ·

and

A∞∞ : · · · → • → • → · · · ,
using Proposition 4.9 and [5, Section 5] we can check that the above proposition
is true. Hence over a coherent ring a representation X of A+

∞ (or A∞∞) is
absolutely pure if and only if X (v) is absolutely pure for each vertex v ∈ Q and
X (v)→ X (w) is a pure epimorphism for each arrow v → w in Q.

For a representationM of a quiverQ = (V,E) we define |M| = |∪v∈VM(v)|.

Lemma 4.11. Let M : M1
φ→ M2 be an absolutely pure representation of the

quiver Q : • → •, ℵ ≥ {|R|, |V |, |E|} be an infinite cardinal and X1 and X2 be
arbitrary subsets of M1 and M2 respectively. Then there exists an absolutely
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pure subrepresentation M ′1
φ′

→M ′2 of M1 →M2 such that |M ′1| ≤ ℵ and |M ′2| ≤
ℵ.

Proof. Let X ′1 := X1 ∪ φ−1(X2) and consider M′ : M ′1 → M ′2 where M ′1 is
a pure submodule of M1 containing X ′1 with |M ′1| ≤ ℵ, M ′2 = φ(M ′1) and
φ′ = φ|M ′

1
. Then M′ has the expected properties. �

Proposition 4.12. Let Q = (V,E) be a quiver in Q (this may contains A+
∞

and A∞∞) and M an absolutely pure representation. Consider ℵ as an infinite
cardinal such that ℵ ≥ {|R|, |V |, |E|} and let Xv ⊆M(v) be subsets with |Xv| ≤
ℵ for all v. Then there exists an absolutely pure subrepresentation M′ ⊆ M
with |M′| ≤ ℵ.

Proof. The proof is similar to the proof of Proposition 3.3 in [4]. �

Theorem 4.13. Let R be a coherent ring and Q = (V,E) be a quiver in Q.
Then the class of all absolutely pure representations of Q, i.e., Abs(Q), is a
covering class.

Proof. We already have proved that Cabs(Q) is a covering class. By using the
same way we can show that Abs(Q) is also a covering class. �

Example 3.

(1) Let Q : • → • be a quiver and M : M → 0 be a representation where
M is an R-module with R a coherent ring. Then there is an absolutely
pure cover F → M for M . Furthermore F → 0 is an absolutely pure
representation since its two terms are absolutely pure and its arrow is
a pure epimorphism. It is not hard to see that (F → 0) −→ (M → 0)
is an absolutely pure cover for M → 0.

(2) Let M be an R-module and F →M be its absolutely pure cover. Then

for a representation M
id→ M of • → •, F id→ F is an absolutely pure

cover.
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