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UPPER AND LOWER SOLUTION METHOD FOR

FRACTIONAL EVOLUTION EQUATIONS WITH ORDER

1 < α < 2

Xiao-Bao Shu and Fei Xu

Abstract. In this work, we investigate the existence of the extremal
solutions for a class of fractional partial differential equations with or-
der 1 < α < 2 by upper and lower solution method. Using the theory
of Hausdorff measure of noncompactness, a series of results about the
solutions to such differential equations is obtained.

1. Introduction

Fractional order differential equation has broad applications in resolving real-
world problems, and as such it attracted researchers’ attention from different
areas. In order to evaluate the behaviors of fractional order differential equation
based models, one need to know the properties of such equation systems, in
particular, the existence of solutions to such equations. Recently, the existence
of solutions to different forms of fractional differential equation systems has
been investigated [1, 2, 3, 4, 5, 9, 10, 11, 15, 16, 19, 20, 21, 23, 26, 27, 29, 30,
32, 33, 34].

Using the upper and lower solution method to study the existence of ex-
tremal solutions for fractional differential equations is an interesting topic of
research, which has been gaining increasing attention recently [1, 15, 16, 20,
23, 27, 30, 32, 33, 34]). Presently, the upper and lower solution method
is widely used to investigate fractional ordinary differential equations (see
[1, 15, 20, 23, 30, 32, 33, 34]). However, this method is seldom used to study
semilinear fractional evolution equations. [27] considered the existence of ex-
tremal solutions to the following semilinear fractional evolution equation

(1.1)

{
cDα

t u(t) +Au(t) = f(t, u(t)), t ∈ J = [0, T ], 0 < α < 1

u(0) = x0,
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where−A is the infinitesimal generator of an analytic semigroup T (t) = eAt|t≥0,
and f : I ×X → X is continuous.

As is well known, a mild solution to system (1.1) satisfies the operator equa-
tion

u(t) = Sα(t)x0 +

∫ t

0

Tα(t− s)f(s, u(s)).

Since 0 < α < 1, we can combine the probability density function and semi-
group to describe the corresponding solution operators Sα(t), Tα(t) (see [24]),
i.e.,

Tα(t) = α

∫ ∞

0

θφα(θ)t
α−1T (tαθ)dθ, Sα(t) =

∫ ∞

0

φα(θ)T (t
αθ)dθ,

where φα(θ) is the probability density function defined on (0,∞) such that its
Laplace transform is

∫ ∞

0

e−θxφα(θ)dθ =

∞∑

j=0

(−x)j

Γ(1 + αj)
, x > 0.

Thus, it is obvious that T (t) = eAt, Tα(t) and Sα(t) are positive if −A is
the infinitesimal generator of an analytic semigroup T (t).

However, for the case 1 < α < 2, the properties of solution operators
Sα(t), Tα(t), Kα(t) corresponding to fractional evolution equations are un-
known (see [30]). On one hand, we do not know if Sα(t), Tα(t), Kα(t) are
positive. On the other hand, we do not know if we can still use the probability
density function together with semigroup to describe the corresponding solu-
tion operators Sα(t), Tα(t), Kα(t). Thus, using the upper and lower solution
method to investigate such fractional order differential equation is a challenging
research topic.

In this paper, we use the upper and lower solution method to investigate a
class of fractional partial differential equations of the form

(1.2)

{
Dα

t u(t) = Au(t) + f(t, u(t)), t ∈ J = [0, T ]
u(0) = x0, u

′(0) = x1,

where the superscript α is the order of fractional differentiation, 1 < α < 2.
We use the properties of the Mittag-Leffer function to study the correspond-
ing solution operators Sα(t), Tα(t), Kα(t). Based on the theories of accretive
operators and m-accretive operators, we prove that the solution operators are
positive. Then, a series of results about the solutions to such differential equa-
tions is obtained.

The rest of the paper is organized as follows. In Section 2, some notions
and notations that are used throughout the paper are presented. The main
results of this article are given in Section 3. Finally, in Section 4, an example
is considered to illustrate the applications of the main results presented in
Section 3.
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2. Preliminaries

In this section, we present some notions and notations that are used through-
out the paper.

2.1. Definitions and lemmas

In this work, C(J ;X) (resp. Cm(J ;X)) denotes the Banach spaces of func-
tions f : J → X , which are continuous (resp. m-times continuous) and differ-
entiable from J to X equipped with the norm ‖f‖C = supt∈J ‖f(t)‖X (resp.

‖f‖Cm = supt∈J

∑m
k=0 ‖f

(k)(t)‖X).
For a function ϕ(t) of a real variable t ∈ R

+, its Laplace transform is

(Lϕ)(λ) =

∫ ∞

0

e−λtϕ(t)dt, (λ ∈ C).

The corresponding inverse Laplace transform for x ∈ R+ is then defined by

(L−1g)(x) =
1

2πi

∫ γ+i∞

γ−i∞

esxg(s)ds.

In general, the Mittag-Leffer function is defined as [28]

Eα,β(z) =

∞∑

k=0

zk

Γ(αk + β)
=

1

2πi

∫

Hα

eµ
µα−β

µα − z
dµ, α, β > 0, z ∈ C,

where Hα denotes a Hankel path, a contour starting and ending at −∞, and

encircling the disc |µ| ≤ |z|
1
α counterclockwise. It then follows from the above

definition that

E1,1(z) = ez,

E2,1(z
2) = cosh(z),

E2,1(−z
2) = cos(z).

In addition, we have

zE2,2(z
2) = sinh(z),

and

zE2,2(−z
2) = sin(z).

Applying the Laplace transform to the Mittag-Leffer function yields

L(tβ−1Eα,β(−ρ
αtα)) =

λα−β

λα + ρα
, Reλ > ρ

1
α , ρ > 0.

In this paper, we use the Hausdorff measure of noncompactness α(·) on each
bounded subset B of Banach space X , which is expressed as

α(B) = inf{ε > 0;B has a finite ε− net in Y }.

Now, we consider some basic properties of α(·).
As is well known, the Hausdorff measure of noncompactness has the following

properties. (See Deimling [14], Heinz [18], Lakshmikantham and Leela [22].)
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(1) For all bounded subsets B,D of X , if B ⊆ D , then α(B) ≤ α(D)
(monotone).

(2) α({x} ∪ B) = α(B) for every x ∈ X and every nonempty subset B ⊂
X(nonsingular).

(3) B is precompact if and only if α(B) = 0 (regular).
(4) Let B + D = {x+ y;x ∈ B, y ∈ D}. Then, α(B + D) ≤ α(B) + α(D).
(5) α(B ∪ D) ≤ max{α(B), α(D)}.
(6) α(λB) ≤ |λ|α(B).

For any W ⊂ C(J ;X), we define
∫ t

0

W (s)ds =

{∫ t

0

u(s)ds : for all u ∈W, t ∈ J

}
.

Lemma 2.1 ([17]). If W ⊂ C(J ;X) is bounded and equicontinuous, then

t→ α(W (t)) is continuous on J , and

(2.1) α(W ) ≤ max
t∈J

α(W (t)),

(2.2) α

(∫ t

0

W (s)ds

)
≤

∫ t

0

α(W (s))ds for all t ∈ J.

Lemma 2.2 ([25]). If {un}
∞
1 is a sequence of Bochner integrable functions from

J into X with ‖un(t)‖ ≤ m̂(t) for almost every t ∈ J and every n ≥ 1, where
m̂(t) ∈ L(J ;R+), then the function ψ(t) = α({un}

∞
n=1) belongs to L(J ;R+)

and satisfies

(2.3) α

({∫ t

0

un(s)ds : n ≥ 1

})
≤ 2

∫ t

0

ψ(s)ds.

Lemma 2.3 ([13]). If W is bounded, then for each ε > 0, there exists a

sequence {un}
∞
n=1 ⊂W satisfying

(2.4) α(W ) ≤ 2α({un}
∞
n=1) + ε.

Let X be a Banach space. If there exists a positive constant k < 1 satisfying
α(QB) ≤ kα(B) for any bounded closed subset B ⊆ W , then the map Q :
W ⊆ X → X is called an α-contraction.

The following lemma will be used to prove our main results.

Lemma 2.4 (See [6], Darbo. Sadovskii.). If W ⊆ X is bounded closed and

convex, the continuous map Q : W → W is an α-contraction, then the map Q
has at least one fixed point in W .

Now, we recall here several definitions about fractional differential equations.

Definition 2.1 ([28]). Assume a, α ∈ R. A function f : [a,∞) → R is said
to be in the space Ca,α if there exist a real number p > α and a function
g ∈ C([a,∞),R) satisfying f(t) = tpg(t). In addition, assuming m is a positive
integer, if f (m) ∈ Ca,α, then f is said to be in the space Cm

a,α.
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Definition 2.2. Suppose function f ∈ Cm
a,α, where m ∈ N+. Its fractional

derivative of order α > 0 in the Caputo sense is defined as

Dα
t f(t) =

1

Γ(m− α)

∫ t

0

(t− s)m−α−1f (m)(s)ds, m− 1 < α ≤ m.

Definition 2.3 ([30]). Suppose A : D ⊆ X → X is a closed linear operator.
Then, A is called a sectorial operator of type (M, θ, α, µ) if there exist 0 < θ <
π/2, M > 0 and µ ∈ R such that the α-resolvent of A exists outside the sector

µ+ Sθ = {µ+ λα : λ ∈ C, |Arg(−λα)| < θ}

and

‖(λαI −A)−1‖ ≤
M

|λα − µ|
, λα 6∈ µ+ Sθ.

Denote Cα(J,X) = {x ∈ C(J,X) : Dαx exists and Dαx ∈ C(J,X)}. Obvi-
ously, Cα(J,X) is a Banach space whose norm is

‖x‖ = sup
t∈J

{‖x(t)‖+ ‖Dαx(t)‖}.

In fact, if 1 < α < 2, we have

Cα(J,X) ⊂ C1(J,X) ⊂ C(J,X).

Here, we denote the Banach spaceD(A) with the graph norm ‖·‖1 = ‖·‖+‖A·‖.
A function u ∈ Cα(J,X)∩C(J,X1) is called a classical solution of (1.2) if u(t)
satisfies equalities (1.2).

Definition 2.4 ([30]). A function u ∈ C([0, T ], X) is said to be a mild solution
to (1.2) if it satisfies the operator equation

u(t) = Sα(t)x0 +Kα(t)x1 +
∫ t

0
Tα(t− s)f(s, u(s))ds.

Here

Sα(t) =
1

2πi

∫

c

eλtλα−1R(λα, A)dλ,

Kα(t) =
1

2πi

∫

c

eλtλα−2R(λα, A)dλ,

Tα(t) =
1

2πi

∫

c

eλtR(λα, A)dλ,

where c is a suitable path satisfying λα 6∈ µ+ Sθ for λ ∈ c.

Lemma 2.5 ([30]). Suppose A is a sectorial operator of type (M, θ, α, µ). If f
satisfies a uniform Hölder condition with exponent β ∈ (0, 1], then the unique

solution of the linear initial value problem for the fractional evolution equation

(2.5)

{
Dα

t u(t) = Au(t) + f(t), t ∈ J = [0, T ]
u(0) = x0, u

′(0) = x1

is

(2.6) u(t) = Sα(t)u0 +Kα(t)u1 +

∫ t

0

Tα(t− s)f(s)ds.
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Next, we recall some definitions and concepts of cone.
Let P be a cone in X . Then a partial ordering in X can be defined by x ≤ y

if and only if y − x ∈ P . If x ≤ y and x 6= y, we say that x < y.
P is said to be normal if there exists a positive constant N such that θ ≤

x ≤ y implies ‖x‖ ≤ N‖y‖, where θ is the zero element of X .
Besides, if X is an ordered Banach space, then C(J,X) is also an ordered

Banach space with partial order “ ≤ ” induced by the positive cone K = {x :
x ∈ C(J,X), x(t) ≥ θ for all t ∈ J}, and if K is normal, then there exists the
same normal constant N , for all θ ≤ x ≤ y, such that ‖x‖ ≤ N‖y‖ holds. Here,
we use [u, v], where u, v ∈ C(J,X) and u ≤ v, to denote the order interval
{ω ∈ C(J,X) : u(t) ≤ ω(t) ≤ v(t) for all t ∈ J} in C(J,X).

Definition 2.5 ([27]). If a function u0 ∈ Cα(J,X) ∩C(J,X1) satisfies

(2.7)

{
Dα

t u0(t) ≤ Au0(t) + f(t, u0(t)), t ∈ J = [0, T ]
u0(0) ≤ x0, u

′(0) ≤ x1,

then u0 is said to be a lower solution of system (1.2). If the directions of all the
inequalities in (2.7) are changed, then u0 is called an upper solution of system
(1.2).

Lemma 2.6 ([8, Gronwall inequality]). Let a and b be nonnegative constants.

If continuous function u(t) on t0 < t < T (some T ≤ ∞) satisfies

(2.8) u(t) ≤ a+ b

∫ t

t0

u(s)ds,

then we have

(2.9) u(t) ≤ aeb(t−t0), t0 ≤ t < T.

2.2. Properties of solution operators

Lemma 2.7. If A is a sectorial operator of type (M, θ, α, µ), then we have

(2.10) Sα(t) =
1

2πi

∫

c

eλtλα−1R(λα, A)dλ = Eα,1(At
α) =

∞∑

k=0

(Atα)k

Γ(1 + αk)
,

(2.11)

Tα(t) =
1

2πi

∫

c

eλtR(λα, A)dλ = tα−1Eα,α(At
α) = tα−1

∞∑

k=0

(Atα)k

Γ(α+ αk)
,

and

(2.12) Kα(t) =
1

2πi

∫

c

eλtλα−2R(λα, A)dλ = tEα,2(At
α) = t

∞∑

k=0

(Atα)k

Γ(2 + αk)
.

Proof. We note that

(2.13)
1

Γ(s)
=

1

2πi

∫

c

eζζ−sdζ, Re s > 0.
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Applying the transformation ζ = η1/α to equation (2.13) gives

(2.14)
1

Γ(s)
=

1

2πiα

∫

c

eη
1/α

η−
s
α+ 1

α−1dη.

Since A is a sectorial operator of type (M, θ, α, µ), it follows from the inequality

‖(λαI −A)−1‖ ≤
M

|λα − µ|

that A is the infinitesimal generator of α-resolvent families

{Sα(t)}t≥0, {Tα(t)}t≥0 and {Kα(t)}t≥0 (see [30]).

Hence, using the transformation t−αη = λα (i.e., t−αdη = αλα−1dλ and eη
1/α

=
etλ), we obtain

Eα,1(At
α) =

∞∑

k=0

(Atα)k

Γ(1 + αk)

=
1

2πiα

∞∑

k=0

{∫

c

eη
1/α

η−k−1

}
(Atα)k

=
1

2πiα

∫

c

eη
1/α

η−1

{
∞∑

k=0

(Atαη−1)k

}
dη

=
1

2πiα

∫

c

eη
1/α

t−α(t−αηI −A)−1dη

=
1

2πi

∫

c

eλtλα−1R(λα, A)dλ

= Sα(t).

Similarly, we can show that

tα−1Eα,α(At
α) = tα−1

∞∑

k=0

(Atα)k

Γ(α+ αk)

=
tα−1

2πiα

∞∑

k=0

{∫

c

eη
1/α

η−k+ 1
α−2

}
(Atα)k

=
tα−1

2πiα

∫

c

eη
1/α

η
1
α−2

{
∞∑

k=0

(Atαη−1)k

}
dη

=
1

2πiα

∫

c

eη
1/α

t−1η
1
α−1(t−αηI −A)−1dη

=
1

2πi

∫

c

eλtR(λα, A)dλ

= Tα(t),
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and

tEα,2(At
α) = t

∞∑

k=0

(Atα)k

Γ(2 + αk)

=
t

2πiα

∞∑

k=0

{∫

c

eη
1/α

η−k− 1
α−1

}
(Atα)k

=
t

2πiα

∫

c

eη
1/α

η−
1
α−1

{
∞∑

k=0

(Atαη−1)k

}
dη

=
1

2πiα

∫

c

eη
1/α

t−α+1η−
1
α (t−αηI −A)−1dη

=
1

2πi

∫

c

λα−2eλtR(λα, A)dλ

= Kα(t).
�

Lemma 2.8. If A is a sectorial operator of type (M, θ, α, µ), then we have

(2.15)
d(Kα(t))

dt
= Sα(t) and ATα(t) =

dSα(t)

dt
.

Proof. A being a sectorial operator of type (M, θ, α, µ) indicates that it is
the infinitesimal generator of α-resolvent families {Sα(t)}t≥0, {Tα(t)}t≥0 and
{Kα(t)}t≥0. Therefore, the series

tα−1
∞∑

k=0

(Atα)k

Γ(α+ αk)
,

∞∑

k=0

(Atα)k

Γ(1 + αk)
and t

∞∑

k=0

(Atα)k

Γ(2 + αk)

are uniformly convergent on [0, T ], where T > 0. Hence, we obtain

dKα(t)

dt
=

[
t

∞∑

k=0

(Atα)k

Γ(2 + αk)

]′
=

[
∞∑

k=0

Aktkα+1

Γ(2 + αk)

]′

=

∞∑

k=0

Ak(1 + αk)tαk

(1 + αk)Γ(1 + αk)
=

∞∑

k=0

(Atα)k

Γ(1 + αk)
= Sα(t)

and

dSα(t)

dt
=

[
∞∑

k=0

(Atα)k

Γ(1 + αk)

]′
= Atα−1

∞∑

k=1

Ak−1tα(k−1)

Γ(α+ α(k − 1))

= Atα−1
∞∑

k=0

(Atα)k

Γ(α+ αk)
= ATα(t)

for t ∈ [0, T ]. �
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Remark 2.1. Now we consider a special case of A = −ρ. It then follows from

(2.16)

{
Dα

t u(t) = −ρu(t) + f(t)
u(0) = c0, u

′(0) = c1

that

u(t) = c0u0(t) + c1u1(t) +

∫ t

0

uδ(t− s)f(s)ds,

where u0(t) = Eα,1(−ρt
α), u1(t) = tEα,2(−ρt

α), anduδ(t) = tα−1Eα,α(−ρt
α).

We note that u0(t), u1(t) and uδ(t) satisfy

u1(t) =

∫ t

0

u0(s)ds, and uδ(t) = −
1

ρ
u′0(t).

Definition 2.6 ([27]). Let R(t)(t≥0) be an α-resolvent solution operator in X .
If R(t)x ≥ θ for every x ≥ θ, x ∈ X and t ≥ 0, then R(t)(t≥0) is said to be
positive.

Definition 2.7 ([7]). Let A : D(A) → X be a linear operator. A : D(A) →
X is said to be nonnegative if and only if it satisfies both of the following
conditions:

(i) There exists K ≥ 0 such that, for every value of λ > 0 and every u ∈
D(A),

(2.17) λ‖u‖X ≤ K‖λu+Au‖X .

(ii) R(λI +A) = X for every value of λ > 0.

Definition 2.8 ([7]). If A is a linear operator and satisfies condition (i) in
Definition 2.7 for K = 1, then A is said to be accretive. In addition, A is said
to be m-accretive if condition (ii) is also satisfied.

Remark 2.2 ([7]). Assume that X is a Hilbert space with inner product (·; ·).
Then the necessary and sufficient condition for A to be accretive is Re(Au;u) ≥
0 for every u ∈ D(A). Particularly, if X is a real Hilbert space and A is positive,
then we obtain (Au;u) ≥ 0 for every u ∈ D(A). Note that an ordered Banach
space is a real space, implying that if X is an ordered Banach space and A is
accretive, then (Au;u) ≥ 0 for every u ∈ D(A).

Remark 2.3. It follows from Lemma 2.7 and Remark 2.2 that if X is an ordered
Banach space and A is a sectorial accretive operator of type (M, θ, α, µ), then
the α-resolvent families {Tα(t)}t≥0, Sα(t)t≥0 and {Kα(t)}t≥0 are all positive.

Lemma 2.9 ([30]). Suppose that A is a sectorial operator of type (M, θ, α, µ).
Then, for ‖Sα(t)‖, there hold the following estimates:

(i) If µ ≥ 0, then for φ ∈ (max{θ, (1− α)π}, π2 (2 − α)), we have

(2.18)
‖Sα(t)‖ ≤

K1(θ,φ)Me[K1(θ,φ)(1+µtα)]
1
α
[(1+ sinφ

sin(φ−θ)
)
1
α −1]

π sin1+ 1
α θ

(1 + µtα)

+ Γ(α)M

π(1+µtα)| cos π−φ
α |α sin θ sinφ

,
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where t > 0.
(ii) If µ < 0, then for φ ∈ (max{π

2 , (1 − α)π}, π2 (2− α)), we have

(2.19) ‖Sα(t)‖ ≤

(
eM [(1 + sinφ)

1
α − 1]

π| cosφ|1+
1
α

+
Γ(α)M

π| cosφ|| cos π−φ
α |α

)
1

1 + |µ|tα
,

where t > 0.

Lemma 2.10 ([30]). If A is a sectorial operator of type (M, θ, α, µ), we have

the following estimates:
(i) If µ ≥ 0, for φ ∈ (max{θ, (1− α)π}, π2 (2− α)), we have

‖Tα(t)‖ ≤
M [(1 + sinφ

sin(φ−θ))
1
α − 1]

π sin θ
(1 + µtα)

1
α tα−1e[K1(θ,φ)(1+µtα)]

1
α

+
Mtα−1

π(1 + µtα)| cos π−φ
α |α sin θ sinφ

,

‖Kα(t)‖ ≤
M [(1 + sinφ

sin(φ−θ))
1
α − 1]K1(θ, φ)

π sin θ
α+2
α

(1 + µtα)
α−1
α tα−1e[K1(θ,φ)(1+µtα)]

1
α

+
MαΓ(α)

π(1 + µtα)| cos π−φ
α |α sin θ sinφ

,

where t > 0 and K1(θ, φ) = max{1, sin θ
sin(φ−θ)}.

(ii) If µ < 0, for φ ∈ (max{π
2 , (1− α)π}, π2 (2− α)), we have

‖Tα(t)‖ ≤

(
eM [(1 + sinφ)

1
α − 1]

π| cosφ|
+

M

π| cosφ|| cos π−φ
α |

)
tα−1

1 + |µ|tα
,

‖Kα(t)‖ ≤

(
eM [(1 + sinφ)

1
α − 1]t

π| cosφ|1+
2
α

+
αΓ(α)M

π| cosφ|| cos π−φ
α |

)
1

1 + |µ|tα
,

where t > 0.

3. Main results

In this section, we give the main results of this article, i.e., the existence
of mild solutions (which is defined in Definition 2.4) to equation (1.2). We
consider the mild solutions under the following assumptions:

(H1) There exists a constant C ≥ 0 satisfying

(3.1) f(t, x2)− f(t, x1) ≥ −C(x2 − x1)

for every t ∈ J , and v0(t) ≤ x1 ≤ x2 ≤ w0(t).
(H2) For C ≥ 0 of inequality (3.1), linear operator (A − CI) is a secto-

rial accretive operator of type (M, θ, α, µ) and generates compact α-resolvent
families {T ∗

α(t)}t≥0, S
∗
α(t)t≥0 and {K∗

α(t)}t≥0.
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(H3) Cauchy problem (1.2) has a lower solution v0 ∈ Cα(J,X) ∩ C(J,X1)
and an upper solution w0 ∈ Cα(J,X)C(J,X1). Notice that, v0, w0 ∈ C(J,X)
and v0 ≤ w0 in ordered Banach space C(J,X).

(H4) There exist a constant L ≥ 0 satisfying

α({f(t, un)}) ≤ Lα({un})

for every t ∈ J , and an increasing monotonic sequence {un} ⊂ [v0(t), w0(t)] ⊂
C(J,X).

Theorem 3.1. Assume that X is an ordered Banach space and its positive cone

K is normal. If conditions (H1) ∼ (H4) are satisfied, then Cauchy problem

(1.2) has minimal and maximal mild solutions that are between v0 and w0.

Such solutions can be obtained by using monotone iterative procedure starting

from v0 and w0, respectively.

Proof. Since C > 0, system (1.2) can be written as

(3.1)

{
Dα

t u(t) = (A− CI)u(t) + f(t, u(t)) + Cu(t), t ∈ J
u(t0) = x0, u

′(t0) = x1.

Notice that (A − CI) is an sectorial accretive operator of type (M, θ, α, µ),
and generates compact and positive α-resolvent families {T ∗

α(t)}t≥0, S
∗
α(t)t≥0

and {K∗
α(t)}t≥0. From Lemmas 2.9 and 2.10 we know that for t ∈ J = [0, T ],

there exists a constant M̃ such that

(3.2) sup
t∈[0,T ]

{‖T ∗
α(t)‖} ≤ M̃, sup

t∈[0,T ]

{‖S∗
α(t)‖} ≤ M̃, sup

t∈[0,T ]

{‖K∗
α(t)‖} ≤ M̃.

By Definition 2.4, the mild solutions to Cauchy problem (3.1) are obtained as

(3.3) u(t) = S∗
α(t)x0 +K∗

α(t)x1 +

∫ t

0

T ∗
α(t− s)[f(s, u(s)) + Cu(s)]ds.

Let D = [v0, w0]. Then the mapping Γ : D → C(J,X) can be expressed as

(3.4) (Γu)(t) = S∗
α(t)x0 +K∗

α(t)x1 +

∫ t

0

T ∗
α(t− s)[f(s, u(s)) + Cu(s)]ds.

We notice that Γ : D → C(J,X) is continuous and u ∈ D is a mild solution of
problem (3.1) or (1.2) if and only if

(3.5) u = Γu.

By (H2), f(t, x) + Cx is a non-decreasing function for x ∈ D. We notice that
{T ∗

α(t)}t≥0, S
∗
α(t)t≥0 and {K∗

α(t)}t≥0 are all positive. Thus, for u1, u2 ∈ D, if
u1 ≤ u2, we have

(3.6) Γu1 ≤ Γu2.

Next, we show that v0 ≤ Γv0 and Γw0 ≤ w0. Let

Dα(t)v0(t) = (A− CI)v0(t) + σ(t), t ∈ J = [0, T ].
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Using Lemma 2.5 and Definition 2.5, the positivity of operators {T ∗
α(t)}t≥0,

S∗
α(t)t≥0 and {K∗

α(t)}t≥0 yields

v0(t) = S∗
α(t)v(0) +K∗

α(t)v
′(0) +

∫ t

0

T ∗
α(t− s)σ(s)ds

≤ S∗
α(t)x0 +K∗

α(t)x1 +

∫ t

0

T ∗
α(t− s)[f(s, v0(s)) + Cv0(s)]ds

for every t ∈ J.
Similarly, we can prove the following inequality:

w0(t) = S∗
α(t)w(0) +K∗

α(t)w
′(0) +

∫ t

0

T ∗
α(t− s)̺(s)(s)ds

≥ S∗
α(t)x0 +K∗

α(t)x1 +

∫ t

0

T ∗
α(t− s)[f(s, w0(s)) + Cw0(s)]ds

for every t ∈ J. Here ̺(t) = Dα(w0(t)) − (A − CI)w0(t). Therefore, for every
u ∈ D, we have

(3.7) v0 ≤ Γv0 ≤ Γu ≤ Γw0 ≤ w0.

That is to say, Γ : D → D is a continuous increasing monotonic operator. We
define

(3.8) vn = Γvn−1, and wn = Γwn−1.

It then follows from inequality (3.6) that

(3.9) v0 ≤ v1 ≤ v2 ≤ · · · ≤ wn ≤ wn−1 ≤ · · · ≤ w2 ≤ w1 ≤ w0.

Denote Ω = {vn} and Ω0 = {vn}∪ v0, n = 1, 2, . . . . By (3.9) and the normality
of the positive cone K, we know that Ω and Ω0 are bounded, implying that

α(Ω(t)) = α(Ω0(t)) for all t ∈ J.

Let

(3.10) ϕ(t) = α(Ω(t)) = α(Ω0(t)), t ∈ J.

Using (H4), (3.2), (3.3), (3.8), (3.10), Lemma 2.2 and the positivity of operators
{T ∗

α(t)}t≥0, S
∗
α(t)t≥0 and {K∗

α(t)}t≥0, we obtain the following estimates:

ϕ(t) = α(Ω(t)) = α(ΓΩ0(t))

= α ({S∗
α(t)x0 +Kα(t)x1

+

∫ t

0

T ∗
α(t− s)[f(s, vn−1(s)) + Cvn−1(s)]ds|n = 1, 2, . . .

})

= α

({∫ t

0

T ∗
α(t− s)[f(s, vn−1(s)) + Cvn−1(s)]ds|n = 1, 2, . . .

})

≤ 2

∫ t

0

α ({T ∗
α(t− s)[f(s, vn−1(s)) + Cvn−1(s)]|n = 1, 2, . . .}) ds
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≤ 2M̃

∫ t

0

α ({[f(s, vn−1(s)) + Cvn−1(s)]|n = 1, 2, . . .}) ds

≤ 2M̃(L+ C)

∫ t

0

α(Ω0(s))ds

= 2M̃(L+ C)

∫ t

0

ϕ(s)ds.(3.11)

It thus follows from (3.11) and Lemma 2.6 (Gronwall inequality) that ϕ(t) ≡ 0
for every t ∈ J. Hence,

α(Ω) = α(Ω0) = max
t∈J

α(Ω0(t)) = 0,

indicating that {vn(t)} (n = 1, 2, . . .) is precompact in X for every t ∈ J .
Therefore, {vn(t)} has a convergent subsequence in X . Based on (3.9), it can
be shown that {vn(t)} itself is convergent in X, i.e., there exists u(t) ∈ X such
that vn(t) → u(t) as n → ∞ for every t ∈ J. It then follows from (3.3), (3.4)
and (3.8) that
(3.12)

vn(t) = S∗
α(t)x0 +K∗

α(t)x1 +

∫ t

0

T ∗
α(t− s)[f(s, vn−1(s)) +Cvn−1(s)]ds, t ∈ J.

If n→ ∞, using the Lebesgue-dominated convergence theorem, we obtain

(3.13) u(t) = S∗
α(t)x0 +K∗

α(t)x1 +

∫ t

0

T ∗
α(t− s)[f(s, u(s)) +Cu(s)]ds, t ∈ J.

Hence, we have u ∈ C(J,X) and u = Γu. In a similar way, we can prove that
there exists u ∈ C(J,X) such that u = Γu. Using (3.6), if u ∈ D is a fixed
point of Γ, we have

v1 = Γv0 ≤ Γu = u ≤ Γw0 = w1.

Then, an easy induction implies that vn ≤ u ≤ wn. By (3.9), taking the limit
as n→ ∞ yields

v0 ≤ u ≤ u ≤ u ≤ w0,

which implies that u andu are the minimal and maximal fixed points of Γ on
[v0, w0], respectively. It thus follows from (3.5) that they are also the minimal
and maximal mild solutions of Cauchy problem (1.2) on [v0, w0], respectively.

�

Corollary 3.1. Suppose that X is an ordered Banach space, whose positive

cone K is regular. Then conditions (H1) ∼ (H3) guarantee that Cauchy prob-

lem (1.2) has minimal and maximal mild solutions between v0 and w0. Such

minimal and maximal mild solutions can be obtained by a monotone iterative

procedure starting from v0 and w0, respectively.

Proof. Since K is regular, any ordered-monotonic and ordered-bounded se-
quence in X is convergent. Suppose that {xn} is a monotonic sequence in
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[v0(t), w0(t)] for t ∈ I. It follows from (H1) that {f(t, xn)+Cxn} is an ordered-
monotonic and ordered-bounded sequence in X , indicating that α({f(t, xn) +
Cxn}) = α({xn}) = 0. Thus, using the properties of the measure of noncom-
pactness, we obtain

(3.14) α({f(t, xn})) ≤ α({f(t, xn) + Cxn}) = 0.

Hence, condition (H4) is satisfied. Then, using Theorem 3.1, one can prove
that the conclusion of Corollary 3.1 holds. �

Remark 3.1. Since the normal cone K is regular in an ordered and weakly
sequentially complete Banach space, we get the following corollary.

Corollary 3.2. If X is an ordered and weakly sequentially complete Banach

space, whose positive cone K is normal with normal constant N , then con-

ditions (H1) ∼ (H3) guarantee that Cauchy problem (1.2) has minimal and

maximal mild solutions between v0 and w0. Such minimal and maximal mild

solutions can be obtained by a monotone iterative procedure starting from v0
and w0, respectively.

Remark 3.2. Based on the fact that the normal cone P is regular in an ordered
and reflective Banach space, we obtain the following corollary.

Corollary 3.3. If X is an ordered and reflective Banach space, whose posi-

tive cone K is normal with normal constant N , then conditions (H1) ∼ (H3)
guarantee that Cauchy problem (1.2) has minimal and maximal mild solutions

between v0 and w0. Such minimal and maximal mild solutions can be obtained

by a monotone iterative procedure starting from v0 and w0, respectively.

4. An example

In this section, we consider an example to illustrate the applications of the
main results of this article. Suppose that Ω ⊂ RN is a bounded domain with a
sufficiently smooth boundary ∂Ω. We study the initial boundary value problem
of parabolic type, given by
(4.1)



Dα
t u(t, x) = −∆u(t, x) + Cu(t, x) + f(t, u(t, x)), t ∈ J = [0, T ], x ∈ Ω,

u|∂Ω=0,
u(0, x) = ϕ(x),
du(t,x)

dt |t=0 = ψ(x),

where ∆ is a Laplace operator, 1 < α < 2, and f : J×R → R is continuous. Let
X = L2(J × Ω,R) and P = {u ∈ C(J,X) : u(t, x) ≥ 0, a.e. (t, x) ∈ J × Ω}.

Obviously, X is an ordered Banach space and P is a normal cone in C(J,X).
We define the operator A by

(4.2) D(A) = H2(Ω) ∪H1
0 (Ω), Au = −∆u+ Cu.

As indicated in [30], the operator A−C = −∆ : D(A) ⊂ X → X is a sectorial
operator of type (M, θ, α, µ) and generates compact and positive α-resolvent
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families {T ∗
α(t)}t≥0, S

∗
α(t)t≥0 and {K∗

α(t)}t≥0. Since it was proved in [12] that

A − C = −∆ is an m-accretive operator on L2(Ω) with dense domain, then
system (4.1) can be reformulated as problem (1.2). Thus condition (H2) is
satisfied. Besides, we suppose that the following conditions hold:

(A1) f(t, 0) ≥ 0 for t ∈ [0, T ], ϕ(x) ≥ 0, ψ(x) ≥ 0 for x ∈ Ω.
(A2) There exists w(t, x) ∈ Cα(J,X) ∩ (H2(Ω) ∪H1

0 (Ω)) such that
(4.3)



Dα
t w(t, x) ≥ −∆w(t, x) + Cu(t, x) + f(t, w(t, x)), t ∈ J = [0, T ], x ∈ Ω,

w|∂Ω=0,
w(0, x) ≥ ϕ(x),
du(t,x)

dt |t=0 ≥ ψ(x),

where w(t, x) ((t, x) ∈ J × Ω), Dα
t w(t, x) and ∆w(t, x) are continuous.

Theorem 4.1. Conditions (H1), (H4) and (A1)-(A2) guarantee that system

(1.2) has minimal and maximal mild solutions between 0 and w.

Proof. It follows from (A1) and (A2) that 0 and w are the lower and upper
solutions of problem (1.2), respectively. Using Theorem 3.1, system (4.1) has
minimal and maximal mild solutions between 0 and w. �
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