DOI QR코드

DOI QR Code

Thickness Measure and Characteristic Length for Effective Young's Modulus of Model Ice Plate in the Ice Basin

빙해수조 모형빙판의 두께 계측과 유효탄성계수용 특성길이 연구

  • Lee, Jae-Hwan (Dept. Naval Architechure & Ocean Engineering, Chungnam National University) ;
  • Choi, Bong-Kyun (Samsung Heavy Industries Central Research Institute) ;
  • Lee, Chun-Ju (Korea Research Institute for Ships and Ocean Engineering, Advanced Ship Research Division)
  • 이재환 (충남대학교 선박해양공학과) ;
  • 최봉균 (삼성중공업 중앙연구소) ;
  • 이춘주 (한국기계연구원 미래선박연구부)
  • Received : 2014.04.08
  • Accepted : 2014.05.27
  • Published : 2014.10.31

Abstract

The model ice is created at KRISO (Korea Research Institute for Ships and Ocean Engineering) ice basin where model ship is tested to obtain the necessary data in order to design the ice breaking vessels and ocean structures operating in the northern pole sea area. Through the model ship test, ice breaking, clearing, ice-ship and ice-propeller interaction behavior can be obtained. Since mechanical properties of ice plate are required for the model test, some tests are performed to obtain the properties in this paper. First, ultrasonic devide is used to measure the thickness of the model ice plate and the results show the possibility of using ultrasonic method, yet more sophisticated device or special sensors are required to measure the ice thickness completely. And the defection of ice plate is measured using LVDT to compute the characteristic length of ice plate on the fluid, which is used to get the effective Young's modulus of model ice.

본 논문에서는 국내 선박해양플랜트연구소에 구축된 빙해수조의 빙특성 중에서 모형빙의 두께와 유효탄성계수 산출과정이 소개되었다. 수조에서 결빙되는 빙판은 크기가 가로 세로각각 30 m 정도에 두께는 40mm정도이다. 모형선의 실험결과를 쇄빙선 설계에 사용하기 위하여 빙 특성 정보가 필요하다. 사람이 빙판을 일부 절개하고 일일이 손으로 두께를 측정하는 것을 지양하기 위하여 초음파 기기를 사용하였는데 저주파 장비를 사용하여 작은 샘플 모형빙에 대한 두께는 계측되었다. 하지만 완벽한 계측을 위해서는 송수신 일체형 저주파 센서나 정확한 위치가 설정된 분리형 센서 혹은 고가의 특수 장치가 필요함을 확인하게 되었다. 한편 빙판의 처짐량을 간이식 LVDT로 계측하고 이를 탄성체 위에 놓인 무한 판의 특성길이 관계식에 대입하여 빙의 유효탄성계수를 산출하였는데 외국의 결과와 유사함이 입증되었다.

Keywords

References

  1. Bock und Polach, R., Ehlers, S. (2013) Model Scale Ice-Part B: Numerical Method, Cold Reg. Sci. & Technol., 94, pp.53-60. https://doi.org/10.1016/j.coldregions.2013.06.009
  2. Bock und Polach, R., Ehlers, S,. Kujala, P. (2013) Model Scale Ice-Part A: Experiments, Cold Reg. Sci. & Technol., 94, pp.94-81.
  3. Bureau Veritas Ice Characteristics and Ice/structure Interactions, http://www.veristar.com (accessed Sep., 2010)
  4. Cho, S-R., Jeong, S-Y., Ha, J-s., Kang, K-J. (2013) An Experimental Study on Generation and Measurement Method of EG/AD Model Ice at Cold Room for Improvements of Its Properties, J. Soc. Nav. Archi. Kor., 50(6), pp.414-420. https://doi.org/10.3744/SNAK.2013.50.6.414
  5. HSVA Hamburg Ship Model Basin, Ice Mechanics Lab, http://www.hsva.de
  6. ITTC (1999, 2002) The Special Committee, Final Report and Recommendations to the 22nd and 25th ITTC.
  7. Jeong, S-Y., Lee, C-J. (2012) Measurement of Sea Ice Thickness in the Artic Ocean using an Electromagnetic Induction Instrument, J. Soc. Nav. Archi. Kor. 49(2), pp.189-195. https://doi.org/10.3744/SNAK.2012.49.2.189
  8. Kim, J.H., Choi, K-S., Jeong, S-Y., Seo, Y-K., Cho, S-R., Lee, C-J. (2008) An Experiment Study for the Mechanical l Properties of Model Ice Grwon in a Cold Room, J. Ocean Eng. Tech., 2(3), pp.64-70.
  9. Lee, J.H., Lee, C-J. (2011) Top and Bottom Contact Type Ultrasonic Device for Measuring the Thickness of Model Ice, Patent No.101118566.
  10. Lee, S-K., Kim, M-C., Lee, W-J., Kim, H-S., Lee, C-J. (2011) Study on the Correction Method of Ice Strength and Thickness Applies to the Sea Trial Condition based on the Ice Model Test Results, J. Soc. Nav. Archit. Kor., 48(5), pp. 457-464. https://doi.org/10.3744/SNAK.2011.48.5.457
  11. Sodhi, D.S., Kato, K., Haynes, F.D., Hirayama, K. (1982) Deflection of an Infinite Plate, Cold Reg. Sci. & Technol., 6, pp.99-104. https://doi.org/10.1016/0165-232X(82)90002-7
  12. Timco, G.W., Weeks, W.F. (2010) A Review of the Engineering Properties of Ice, Cold Reg. Sci. & Technol., 60, pp.107-129. https://doi.org/10.1016/j.coldregions.2009.10.003
  13. Timoshenko, S., Woinowsky-Krieger, S. (1959) Theory of Plates and Shells, Mc-Graw-Hill Co.,
  14. Wyman, M. (1950) Defection of an Infinite Plate, Can. J. Res., A28: pp.293-302.