DOI QR코드

DOI QR Code

화학적 습식 에칭을 통한 AlN와 GaN의 결함 및 표면 특성 분석

Investigation of defects and surface polarity in AlN and GaN using wet chemical etching technique

  • Hong, Yoon Pyo (Division of Materials Science and Engineering, Hanyang University) ;
  • Park, Jae Hwa (Division of Materials Science and Engineering, Hanyang University) ;
  • Park, Cheol Woo (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Hyun Mi (Division of Materials Science and Engineering, Hanyang University) ;
  • Oh, Dong Keun (Division of Materials Science and Engineering, Hanyang University) ;
  • Choi, Bong Geun (Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Seong Kuk (Unimo Photron Co., Ltd.) ;
  • Shim, Kwang Bo (Division of Materials Science and Engineering, Hanyang University)
  • 투고 : 2014.10.02
  • 심사 : 2014.10.17
  • 발행 : 2014.10.31

초록

화학적 습식 에칭을 통해 AlN와 GaN의 결함 및 표면 특성을 분석했다. 화학적 습식 에칭은 단결정의 결함을 선택적으로 에칭하기 때문에 결정의 품질을 평가하는 좋은 방법으로 주목 받고 있다. AlN와 GaN의 단결정은 NaOH/KOH 용융액을 이용하여 에칭을 했으며, 에칭 후 표면 특성을 알아보기 위해 주사전자현미경(SEM)과 원자힘 현미경(AFM)을 촬영했다. 에치 핏의 깊이를 측정하여 표면에 따른 에칭 속도를 계산했다. 그 결과 AlN와 GaN 표면에는 두 개의 다른 형태에 에치 핏이 형성 되었다. (0001)면의 metal-face(Al, Ga)는 육각 추를 뒤집어 놓은 형태를 갖는 반면 N-face는 육각형 형태의 소구 모양(hillock structure)을 하고 있었다. 에칭 속도는 N-face가 metal-face(Al, Ga)보다 각 각 약 109배(AlN)와 5배 정도 빨랐다. 에칭이 진행되는 동안 에치 핏은 일정한 크기로 증가하다 서로 이웃한 에치 핏들과 합쳐지는 것으로 보여졌다. 또한 AlN와 GaN의 에칭 공정을 화학적 메커니즘을 통해 알아 보았는데, 수산화 이온($OH^-$)과 질소의 dangling bond에 영향을 받아 metal-face(Al, Ga)와 N-face가 선택적으로 에칭되는 것으로 추론되었다.

We investigated defects and surface polarity in AlN and GaN by using wet chemical etching. Therefore, the effectiveness and reliability of estimating the single crystals by defect selective etching in NaOH/KOH eutectic alloy have been successfully demonstrated. High-quality AlN and GaN single crystals were etched in molten NaOH/KOH eutectic alloy. The etching characteristics and surface morphologies were carried out by scanning electron microscope (SEM) and atomic force microscope (AFM). The etch rates of AlN and GaN surface were calculated by etching depth as a function of etching time. As a result, two-types of etch pits with different sizes were revealed on AlN and GaN surface, respectively. Etching produced hexagonal pits on the metal-face (Al, Ga) (0001) plane, while hexagonal hillocks formed on the N-face. On etching rate calibration, it was found that N-face had approximately 109 and 15 times higher etch rate than the metal-face of AlN and GaN, respectively. The size of etch pits increased with an increase of the etching time and they tend to merge together with a neighbouring etch pits. Also, the chemical mechanism of each etching process was discussed. It was found that hydroxide ion ($OH^-$) and the dangling bond of nitrogen play an important role in the selective etching of the metal-face and N-face.

키워드

참고문헌

  1. C. Pernot and S. FuKahori, "Development of high efficiency 255-355 nm AlGaN based light-emitting diodes, Phys Status Solidi A 208 (2011) 1594. https://doi.org/10.1002/pssa.201001037
  2. Md. Mahbub Satter and H.J. Kim, "Design and analysis of 250-nm AlInN laser diodes on AlN substrates using tapered electron blocking layers, IEEE J. Quantum Electronics. 48 (2011) 703.
  3. A. Szczesny and P. Sniecikowski, "Reactive ion etching of novel materials-GaN and SiC", Vacuum. 70 (2003) 249. https://doi.org/10.1016/S0042-207X(02)00651-6
  4. P. Visconti and D. Huang, "Rapid delineation of extended defects in GaN and a novel method for their reduction", Phys. Status Solidi A 190 (2002) 5. https://doi.org/10.1002/1521-396X(200203)190:1<5::AID-PSSA5>3.0.CO;2-H
  5. S.M. Kang, "Growth of AlN crystals by the sublimation process", J. Korean Cryst. Growth and Cryst. Technol. 18 (2008) 6b.
  6. P. Visconti and D. Huang, "Investigation of defects and surface polarity in GaN using hot wet etching together with microscopy and diffraction techniques", Mater. Sci. and Eng. B93 (2002) 229.
  7. D. Zhung and J.H. Edgar, "Wet etching of GaN, AlN, and SiC: a review", Mater. Sci. and Eng. R48 (2005) 1.
  8. W. Guo and J. Xie, "Comparative study of etching high crystalline equality AlN and GaN", J. Crystal Growth 366 (2013) 20. https://doi.org/10.1016/j.jcrysgro.2012.12.141
  9. D. Zhuang and J.H. Edgar, "Defect-selective etching of bulk AlN single crystals in molten KOH/NaOH eutectic alloy", J. Crystal Growth 262 (2004) 89. https://doi.org/10.1016/j.jcrysgro.2003.10.051
  10. J. Chen and J.F. Wang, "Measurement of threading dislocation densities in GaN by wet chemical etching", Semicond. Sci. Technol. 21 (2006) 1229. https://doi.org/10.1088/0268-1242/21/9/004
  11. L. zhang and Y. Shao, "Characterization etch pits in HVPE-grown GaN using different wet chemical etching methods", J. Alloys Compd. 504 (2010) 186. https://doi.org/10.1016/j.jallcom.2010.05.085
  12. D.K. Oh and B.G. Choi, "Surface morphology variation during wet etching of GaN epilayer grown by HVPE", J. Korean Cryst. Growth and Cryst. Technol. 22 (2012) 261. https://doi.org/10.6111/JKCGCT.2012.22.6.261
  13. D. Li and M. Sumiya, "Selective etching of GaN polar surface in potassium hydroxide solution studied by xray photoelectron spectroscopy", J. Appli. Phys. 90 (2001) 4219. https://doi.org/10.1063/1.1402966
  14. D. Peng and Y. Feng, "Effects of surface treatment for sapphire substrate on gallium nitride films", J. Alloys Compd. 476 (2009) 629. https://doi.org/10.1016/j.jallcom.2008.09.064
  15. J.L. Weyher and S. Lazar, "Orthodox etching of HVPEgrown GaN", J. Crystal Growth 305 (2007) 384. https://doi.org/10.1016/j.jcrysgro.2007.03.030

피인용 문헌

  1. Microstructure analyses of aluminum nitride (AlN) using transmission electron microscopy (TEM) and electron back-scattered diffraction (EBSD) vol.25, pp.4, 2015, https://doi.org/10.6111/JKCGCT.2015.25.4.127
  2. Parametric study of inductively coupled plasma etching of GaN epitaxy layer vol.26, pp.4, 2016, https://doi.org/10.6111/JKCGCT.2016.26.4.145