DOI QR코드

DOI QR Code

A Study on Orbit Stability and Control Method for Displaced Non-Keplerian Orbits by Using Pitch Angle Variation

변위 비케플러 궤도의 안정성 분석 및 피치각 변화를 이용한 제어기법 연구

  • Kim, Mingyu (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Lee, Jeongpyo (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Kim, Jeongrae (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • Received : 2014.02.21
  • Accepted : 2014.09.04
  • Published : 2014.10.01

Abstract

Displaced non-Keplerian orbit, center of mass is displaced from orbit plane, enables special spacecraft missions. It requires continuous thrust to maintain the orbit, and solar sail is useful for this purpose. Equations for feasible region and stability analysis are derived for non-Keplerian orbit for general continuous thrust. Differences for solar sail spacecraft are discussed. Non-keplerian orbits are classified into four types. Location-specific required accelerations for orbit maintenance are calculated. Orbit stabilities of each orbit type are analyzed and verified by numerical simulations. In order to control non-Keplerian orbit in unstable region, a control algorithm using the real-time LQR control is developed and evaluated by numerical simulations.

변위 비케플러 궤도란 질량중심이 궤도면에 대하여 변위를 갖는 궤도인데, 일반적인 궤도에 비해 다양한 임무를 수행할 수 있다는 장점이 있다. 비케플러 궤도를 유지하기 위해서는 지속적인 추력이 필요한데, 태양돛 우주선은 연료 소모 없이 지속적으로 추력을 얻을 수 있기 때문에 비케플러 궤도 운용에 적합하다. 본 논문에서는 소모성 추진제와 태양돛에 모두 적용할 수 있는 비케플러 궤도 이론을 소개하고, 태양돛 우주선에 적용시 차이점을 분석하였다. 비케플러 궤도를 4가지 유형으로 분류하고 궤도 유지를 위한 요구가속도를 계산하였다. 각 유형별 궤도안정성 식을 분석하고 시뮬레이션을 통해 검증하였다. 불안정 영역에서 궤도를 제어하기 위해 실시간 LQR을 적용한 제어기법을 개발하여 이에 대한 시뮬레이션을 수행하였다.

Keywords

References

  1. Yashko G. J. and Hastings. D. E., Analysis of Thruster Requirements and Capabilities for Local Satellite Cluster, 10th Annual AIAA/USU Conference on Small Satellite, 1996
  2. Baig. S, and McInnes. C. R., Artificial Halo Orbits for Low-Thrust Propulsion Spacecraft, Celestial Mechanics and Dynamical Astronomy, 2009
  3. West J. L., "The Geostorm Warning Mission: Enhanced Opportunities Based On New Technology", 14th AAS/AIAA Space Flight Mechanics Conference, AIAA 2004-0276.
  4. Ceriotti M., McInnes C. R., "System design of a hybrid sail pole-sitter", Journal of Advances in Space Research, Vol. 48, No. 11, 2011, pp. 1754-1762. https://doi.org/10.1016/j.asr.2011.02.010
  5. McInnes C. R., "The Existence and Stability of Families of Displaced Two-Body Orbits", Celestial Mechanics and Dynamical Astronomy, Vol. 67, No. 2, 1997, p. 167-180. https://doi.org/10.1023/A:1008280609889
  6. McInnes C. R., Solar Sailing: Technology, Dynamics and Mission Applications, Springer, 2004.
  7. McInnes C. R., et al., "Solar Sail Halo Orbits I: Heliocentric Case", Journal of Spacecraft and Rockets, Vol. 29, No. 4, 1992, pp. 466-471. https://doi.org/10.2514/3.25487
  8. McInnes C. R., "Solar Sail Halo Orbits II: Geocentric Case", Journal of Spacecraft and Rockets, Vol. 29, No. 4, 1992, pp. 472-479. https://doi.org/10.2514/3.55639
  9. Mengali G and Quarta A. A., "Non-Keplerian orbits for electric sails", Celestial Mechanics and Dynamical Astronomy, Vol. 105, Nos. 1-3, 2009, p. 179-195. https://doi.org/10.1007/s10569-009-9200-y
  10. McKay Robert J., et al., "Survey of Highly-Non-Keplerian Orbits with Low-Thrust Propulsion", Journal of Guidance, Control, and Dynamics, Vol. 34, No. 3, 2011, p. 645-666. https://doi.org/10.2514/1.52133