DOI QR코드

DOI QR Code

Pd 촉매금속의 표면형상 변형에 의한 고감도 MEMS 형 마이크로 수소가스 센서 제조공정

Highly Sensitive MEMS-Type Micro Sensor for Hydrogen Gas Detection by Modifying the Surface Morphology of Pd Catalytic Metal

  • 김정식 (서울시립대학교 신소재공학과) ;
  • 김범준 (서울시립대학교 신소재공학과)
  • Kim, Jung-Sik (Department of Materials Science and Engineering, The University of Seoul) ;
  • Kim, Bum-Joon (Department of Materials Science and Engineering, The University of Seoul)
  • 투고 : 2014.07.07
  • 심사 : 2014.09.11
  • 발행 : 2014.10.27

초록

In this study, highly sensitive hydrogen micro gas sensors of the multi-layer and micro-heater type were designed and fabricated using the micro electro mechanical system (MEMS) process and palladium catalytic metal. The dimensions of the fabricated hydrogen gas sensor were about $5mm{\times}4mm$ and the sensing layer of palladium metal was deposited in the middle of the device. The sensing palladium films were modified to be nano-honeycomb and nano-hemisphere structures using an anodic aluminum oxide (AAO) template and nano-sized polystyrene beads, respectively. The sensitivities (Rs), which are the ratio of the relative resistance were significantly improved and reached levels of 0.783% and 1.045 % with 2,000 ppm H2 at $70^{\circ}C$ for nano-honeycomb and nano-hemisphere structured Pd films, respectively, on the other hand, the sensitivity was 0.638% for the plain Pd thin film. The improvement of sensitivities for the nano-honeycomb and nano-hemisphere structured Pd films with respect to the plain Pd-thin film was thought to be due to the nanoporous surface topographies of AAO and nano-sized polystyrene beads.

키워드

참고문헌

  1. F. DiMeo Jr., I. -S. Chen, P. Chen, J. Neuner, A. Roerhl and J. Welch, Sens. Actuators B, 117, 10 (2006). https://doi.org/10.1016/j.snb.2005.05.007
  2. J. -H. Yoon and J. -S. Kim, Solid State Ionics, 192(1), 668 (2011). https://doi.org/10.1016/j.ssi.2010.09.049
  3. B. -J. Kim and J. -S. Kim, Mater. Chem. Phys., 138(1), 366 (2013). https://doi.org/10.1016/j.matchemphys.2012.12.002
  4. J. -H. Yoon, B. -J. Kim and J. -S. Kim, Mater. Chem. Phys., 133, 987 (2012). https://doi.org/10.1016/j.matchemphys.2012.02.002
  5. F. Wu and J. E. Morris, Thin Solid Films, 246, 17 (1994). https://doi.org/10.1016/0040-6090(94)90725-0
  6. F. Favier, E. C. Walter, M. P. Zach, T. Benter and R. M. Penner, Science, 293, 2227 (2001). https://doi.org/10.1126/science.1063189
  7. S. C. Vitae, N. K. Vitae, J. F. Vitae and C. H. Chung, Sens. Actuators B, 136, 388 (2009). https://doi.org/10.1016/j.snb.2008.12.016
  8. F. A. Lewis, Int. J. Hydrogen Energy, 20(7), 587 (1995). https://doi.org/10.1016/0360-3199(94)00113-E
  9. L. L. Jewell and B. H. Davis, Appl. Catalysis A, 310, 1 (2006). https://doi.org/10.1016/j.apcata.2006.05.012
  10. A. Qurashi, N. Tabet, M. Faiz and T. Yamzaki, Nanoscale Res. Lett., 4, 948 (2009). https://doi.org/10.1007/s11671-009-9317-7
  11. E. Sennik, Z. Colak, N. Kilinc and Z. Z. Ozturk, Int. J. Hydrogen Energy, 35, 4420 (2010). https://doi.org/10.1016/j.ijhydene.2010.01.100
  12. J. M. Baik, M. H. Kim, C. Larson, C. T. Yavuz, G. D. Stucky, A. M. Wodtke and M. Moskovits, Nano Lett., 9(12), 3980 (2009). https://doi.org/10.1021/nl902020t
  13. Q. Cao and J. A. Rogers, Adv. Mater., 21, 29 (2009). https://doi.org/10.1002/adma.200801995
  14. J. Kong, M. G. Chapline and H. Dai, Adv. Mater., 13, 1384 (2001). https://doi.org/10.1002/1521-4095(200109)13:18<1384::AID-ADMA1384>3.0.CO;2-8
  15. Y. Sun and H. H. Wang, Adv. Mater., 19, 2818 (2007). https://doi.org/10.1002/adma.200602975
  16. S. Y. Jo, J. Y. Kim and S. S. Kim, Kor. Mater. Res., 23(5), 281 (2013). https://doi.org/10.3740/MRSK.2013.23.5.281
  17. M. Kocanda, L. Potluri, M. Haji-Sheikh, D. S. Ballantine and A. Bose, in Proc. 8th IEEE Sens. Conf. (Christchurch, New Zealand, 2009) p. 308.