DOI QR코드

DOI QR Code

Application of Immobilization Technology in Solubilization of Rock Phosphate

  • Walpola, Buddhi Charana (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, Ah Young (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Jeon, Ju Hyeon (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Yoon, Min-Ho (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
  • Received : 2014.07.18
  • Accepted : 2014.08.14
  • Published : 2014.08.30

Abstract

Phosphates solubilizing bacterial strains belong to Pantoea, Burkholderia and Enterobacter were isolated and employed in assessing their solubilization ability of Ca phosphate and ER phosphate (Eppawala Rock Phosphate). Among the bacterial strains used, PSB-13 (Pantoea rodasii) showed higher Ca-phosphate solubilization ($1100{\mu}g\;ml^{-1}$) as well as rock phosphate solubilization ($168{\mu}g\;ml^{-1}$). The strain was then immobilized in agar to further assess its phosphate solubilization ability. According to the results, agar encapsulated strain solubilized 0.3%, 7.31%, 20.24%, and 20.62% more Ca-phosphate and 11.53%, 15.29%, 28.48%, 36.55% (respectively in 4 cycles) more ER-phosphate than free cells. The reuse efficiency of agar entrapped bacterial cells for Ca-phosphate and ER-phosphate solubilization was greater than that by freely suspended bacterial cells. In conclusion, immobilization could enhance the phosphate solubilization capacity of the strains and thus could be used effectively in enhancing solubilization of ER phosphate.

Keywords

References

  1. Ahmed, N. and S. Shahab. 2011. Phosphate solubilization: Their mechanism genetics and application. Int. J. Microbiol. 9:4408-4412.
  2. Anandham, R., K. H. Choi, P. I. Gandhi, W. J. Yim, S. J. Park, K. A. Kim, M. Madhaiyan, and T. M. Sa. 2007. Evaluation of shelf life and rock phosphate solubilization of Burkholderia sp. in nutrient-amended clay, rice bran and rock phosphate-based granular formulation. World J. Microbiol. Biotechnol. 23: 1121-1129. https://doi.org/10.1007/s11274-006-9342-y
  3. Banik, S. and B. K. Dey. 1983. Phosphate solubilizing potentiability of the microorganisms capable of utilizing aluminium phosphate as a sole phosphate source. Zentralbl Mikrbiol. 138:17-23.
  4. Childers, D. L., J. Corman, M. Edwards, and J. J. Elser. 2011. Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. Biosci. 61:117-124. https://doi.org/10.1525/bio.2011.61.2.6
  5. Cordell, D., A. Rosemarin, J. J. Schröder, and A. L. Smit. 2011. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere. 84: 747-758. https://doi.org/10.1016/j.chemosphere.2011.02.032
  6. Deubel, A., Gransee, A., and Merbach, W. 2000. Transformation of organic rhizodepositions by rhizosphere bacteria and its influence on the availability of tertiary calcium phosphate. J Plant Nutr. Soil Sci. 163:387-392. https://doi.org/10.1002/1522-2624(200008)163:4<387::AID-JPLN387>3.0.CO;2-K
  7. Dinalankara, D. M. S. K. 1995. Eppawala phosphate deposit of Sri Lanka: Present status. Proceedings of International workshop on 'Direct application of phosphate rock and appropriate technology fertilizers in Asia- What hinders acceptance and growth'. IFDC-IFS Kandy, Sri Lanka. 153-163.
  8. Elser, J. and E. Bennett. 2011. P cycle: A broken biogeochemical cycle. Nature. 478:29-31. https://doi.org/10.1038/478029a
  9. Fenice, M., L. Selbman, F. Federici, and N. Vassilev. 2000. Application of encapsulated Penicillium variabile P16 in solubilization of rock phosphate. Biores. Technol. 73:157-162. https://doi.org/10.1016/S0960-8524(99)00150-9
  10. Jain, R., J. Saxena, and V. Sharma. 2010. The evaluation of free and encapsulated Aspergillus awamori for phosphate solubilization in fermentation and soil-plant system. Appl. Soil Ecol. 46:90-94. https://doi.org/10.1016/j.apsoil.2010.06.008
  11. Jasinski, S. M. 2010. Phosphate rock, USGS Minerals Yearbook.
  12. Jayawardena, D. 1976. The Eppawala carbonatite complex. Geological Survey Department publication, Colombo. Sri Lanka.
  13. Jayawardena, D. 1989. Characterization of Eppawala rock phosphate for manufacture of phosphatic fertilizer, Proceedings of National Symposium on 'The Eppawala phospherite deposit- Recent Advances in knowledge', Kandy, Sri Lanka. pp 10-11.
  14. MacDonald, G. K., E. M. Bennett, P. A. Potter, and N. Ramankutty. 2011. Agronomic phosphorus imbalances across the world's croplands. Proc. Nat. Aca. Sci. 108:3086-3091. https://doi.org/10.1073/pnas.1010808108
  15. Murphy, J. and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in mineral waters. Anal. Chim. Acta. 27:31-36. https://doi.org/10.1016/S0003-2670(00)88444-5
  16. Nautiyal, C. S. 1999 An efficient microbiological growth medium for screening of phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170:265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  17. Panhwar, Q. A., R. Othman, Z. A. Rahman, S. Meon, and M. R. Ismail. 2012. Isolation and characterization of phosphate solubilizing bacteria from aerobic rice. Afr. J. Biotech. 11: 2711-2719.
  18. Petruccioli, M. and E. Angiani. 1995. Fumaric acid production by Rhizopus arrhizus immobilized in different carriers. Ann. Microbiol. Enzymol. 45:119-128.
  19. Prasanna, A., V. Deepa, P. Balakrishna Murthy, M. Deecaraman, R. Sridhar, and P. Dhandapani. 2011. Insoluble phosphate solubilization by bacterial strains isolated from rice rhizosphere soils from Southern India. Int. J. Soil Sci. 6:134-141. https://doi.org/10.3923/ijss.2011.134.141
  20. Rekha, P. D., W. A. Lai, A. B. Arun, and C. C. Young. 2007. Effect of free and encapsulated Pseudomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic conditions. Bioresour. Technol. 98:447-451. https://doi.org/10.1016/j.biortech.2006.01.009
  21. SAS (1999) SAS/STAT User's Guide Version 8. SAS, Cary, NC.
  22. Saxena, M. J. 2011. Efficacy of thizobacterial strains encapsulated in nontoxic biodegradable gel matrices to promote growth and yield of wheat plants. Appl. Soil Ecol. 48:301-308.
  23. Son, H. J., G. T. Park, M. S. Cha, and M. S. Heo. 2006. Solubilization of insoluble inorganic phosphates by a novel salt and pH tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour. Technol. 97:204-210. https://doi.org/10.1016/j.biortech.2005.02.021
  24. Tennakone, K., S. V. R. Weerasooriya, P. L. Jayatissa, M. L. W. D. Damayanthi, and L. H. K. Silva. 1988. Non hygroscopic superphosphate fertilizer from apatite and hydrochloric acid. Fert. Res. 16:87-96. https://doi.org/10.1007/BF01053317
  25. Tennakoon, K. 1988. Production of ammonium phosphate containing fertilizers from apatite unsuitable for the wet process. Fert. Res. 17:97-100. https://doi.org/10.1007/BF01050460
  26. Vassilev, N., M. Fenice, and F. Federici. 1996. Rock phosphate solubilization with gluconic acid produced by immobilized Penicillium variable P16. Biotechnol. Tech. 10:585-588. https://doi.org/10.1007/BF00157366
  27. Vassilev, N., M. Toro, M. Vassileva, R. Azcon, and J. M. Barea. 1997. Rock phosphate solubilization by immobilized cells of Enterobacter sp. in fermentation and soil conditions. Biores. Technol. 61:29-32. https://doi.org/10.1016/S0960-8524(97)84694-9
  28. Vassilev, N., M. Vassileva, M. Fenice, and F. Federici. 2001. Immobilized cell technology applied in solubilization of insoluble inorganic (rock) phosphates and P plant acquisition. Biores. Technol. 79:263-271. https://doi.org/10.1016/S0960-8524(01)00017-7
  29. Vassileva, M., R. Azcon, J. Barea, and N. Vassilev. 1998. Application of an encapsulated filamentous fungus in solubilization of inorganic phosphate. J. Biotechnol. 63:67-72. https://doi.org/10.1016/S0168-1656(98)00074-1
  30. Vassileva, M., R. Azcon, J. M. Barea, and N. Vassilev. 1999. Effect of encapsulated Enterobacter sp. On plant growth and phosphate uptake. Biores. Technol. 67:229-232. https://doi.org/10.1016/S0960-8524(98)00130-8
  31. Vassileva, M., R. Azcon, J. M. Barea, and N. Vassilev. 2000. Rock phosphate solubilization by free and encapsulated cells of Yarowia lipolytica. Proc. Biochem. 35:693-697. https://doi.org/10.1016/S0032-9592(99)00132-6
  32. Walpola, B. C., and M. H. Yoon. 2013. Isolation and characterization of phosphate solubilizing bacteria and their co-inoculation efficiency on tomato plant growth and phosphorous uptake. Afr. J. Microbiol. Res. 7: 266-275.
  33. Walpola, B. C., W. S. Kong, and M. H. Yoon. 2013. Solubilization of inorganic phosphates and plant growth promotion by Pantoea strains. Korean J. Soil Sci. Fert. 46: 494-501. https://doi.org/10.7745/KJSSF.2013.46.6.494