References
- Reissner E., The effect of transverse shear deformation on the bending of elastic plate, ASME, J. Appl. Mech., 12, 69-76, 1945
- Ahmad S., Irons B.M. and Zienkiewicz O.C., Analysis of thick and thin shell structures by curved finite elements, Int. J. Num. Meth. Engng., 2, 419-451, 1970 https://doi.org/10.1002/nme.1620020310
- Zienkiewicz O.C., Taylor R.L. and Too J.M., Reduced integration technique in general analysis of plates and shells, Int. J. Numer. Meth. Engng, 3, 275-290, 1971 https://doi.org/10.1002/nme.1620030211
- Pawsey S.F. and Clough R.W., Improved numerical integration of thick shell finite elements, Int. J. Numer. Meth. Engng, 3, 575-586, 1971 https://doi.org/10.1002/nme.1620030411
- Huang H.C. and Hinton E., A new nine node degerated shell element with enhanced membrane and shear interpolation, Int. J. Numer. Meth. Engng, 22, 73-92, 1986 https://doi.org/10.1002/nme.1620220107
- Bathe K.J. and Dvorkin E.N., A formulation of general shell element-the use of mixed interpolation of tensorial components, Int. J. Numer. Meth. Engng, 22, 697-722, 1986 https://doi.org/10.1002/nme.1620220312
- Jang JH and Pinsky PM, An assumed covariant strain based 9-node shell element, Int. J. Numer. Meth. Engng, 24, 2389-2411, 1987 https://doi.org/10.1002/nme.1620241211
- Choi C.K. and Schnobrich W.C., Nonconforming finite element analysis of shells, J. Eng. Mech. Div. ASCE, 101, 447-464, 1975
- Choi C.K. and Yoo S.W., Combined use of multiple improvement techniques in degenerated shell element, Comput. Struct., 39, 5, 557-569, 1991 https://doi.org/10.1016/0045-7949(91)90064-S
- Lee S.J. and Kanok-Nuchulchai W., A nine-node assumed strain finite element for large deformation analysis of laminated shells, International Journal for Numerical Methods in Engineering, 42, 4, p.p. 777-798, 1998 https://doi.org/10.1002/(SICI)1097-0207(19980715)42:5<777::AID-NME365>3.0.CO;2-P
- Hughes T.J.R., Cottrell J.A. and Bazilevs Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195, 2005 https://doi.org/10.1016/j.cma.2004.10.008
- Piegel L. and Tiller W., The NURBS Book, Springer-Verlag(Berlin Heidelberg), 1995
- Cottrell J.A., Hughes T.J.R. and Bazilevs Y., Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley, Chichester, 2009
- 이상진, 김하룡, RM이론에 기저한 등기하해석법을 이용한 판의 해석, 28, 9, 75-82, 2012
- Uhm T.K. and Youn S.K., T-spline finite element method for the analysis of shell structures, Int. J. Numer. Meth. Engng., 80, 507-536, 2009 https://doi.org/10.1002/nme.2648
- Hinton E. and Owen D.R.J., Finite element software for plates and shells, Swansea, UK, Pineridge Press, 1984
- Zienkiewicz O.C., Xu Z., Ling F.Z., Samuelsson A. and Wiberg N.E., Linked interpolation for Reissner.Mindlin plate element: part I-a simple quadrilateral Int. J. Numer. Meth. Engng, 36, 3043-3056, 1993 https://doi.org/10.1002/nme.1620361802
- Soh A.K., Long Z.F. and Cen S., A new nine DOF triangular element for analysis of thick and thin plates, Computational Mech, 24, 408.417, 1999 https://doi.org/10.1007/s004660050461
- Weissman S.L. and Taylor R.L., Resultant field for mixed plate bending elements, Comput. Methods Appl. Mech. Eng., 79, 321-355, 1990 https://doi.org/10.1016/0045-7825(90)90067-V
- Belytschko T., Stolarski H., Liu W.K., Carpenter N. and Ong J.S.-J., Stress projection for membrane and shear locking in shell finite elements, Comput. Methods Appl. Mech. Eng., 51, 221-258, 1985 https://doi.org/10.1016/0045-7825(85)90035-0