DOI QR코드

DOI QR Code

Linear Aanalysis of Continuum Shells Using Isogeometric Degenerated Shell Element

등기하 퇴화쉘 요소를 이용한 연속체 쉘의 선형해석

  • 박경섭 (경상대학교 건축공학과 계산역학연구실) ;
  • 이상진 (경상대학교 건축공학과)
  • Received : 2014.05.18
  • Accepted : 2014.10.12
  • Published : 2014.10.30

Abstract

In this study, linear static analysis of continuum shell structures is conducted by using a degenerated shell element which is developed by using isogeometric approach. Notably, the present isogeomeric shell element uses the positions of control points to create the normal vector via the mapping between control points and associated points on real surface. A series of benchmark tests are performed to verify the performance of the present isogeometric degenerated shell element. From numerical test, the present shell element can overcome locking phenomena with only use of refinements and therefore any special treatment such as reduced integration, assumed strains, non-conforming modes are not required in the formulation.

Keywords

References

  1. Reissner E., The effect of transverse shear deformation on the bending of elastic plate, ASME, J. Appl. Mech., 12, 69-76, 1945
  2. Ahmad S., Irons B.M. and Zienkiewicz O.C., Analysis of thick and thin shell structures by curved finite elements, Int. J. Num. Meth. Engng., 2, 419-451, 1970 https://doi.org/10.1002/nme.1620020310
  3. Zienkiewicz O.C., Taylor R.L. and Too J.M., Reduced integration technique in general analysis of plates and shells, Int. J. Numer. Meth. Engng, 3, 275-290, 1971 https://doi.org/10.1002/nme.1620030211
  4. Pawsey S.F. and Clough R.W., Improved numerical integration of thick shell finite elements, Int. J. Numer. Meth. Engng, 3, 575-586, 1971 https://doi.org/10.1002/nme.1620030411
  5. Huang H.C. and Hinton E., A new nine node degerated shell element with enhanced membrane and shear interpolation, Int. J. Numer. Meth. Engng, 22, 73-92, 1986 https://doi.org/10.1002/nme.1620220107
  6. Bathe K.J. and Dvorkin E.N., A formulation of general shell element-the use of mixed interpolation of tensorial components, Int. J. Numer. Meth. Engng, 22, 697-722, 1986 https://doi.org/10.1002/nme.1620220312
  7. Jang JH and Pinsky PM, An assumed covariant strain based 9-node shell element, Int. J. Numer. Meth. Engng, 24, 2389-2411, 1987 https://doi.org/10.1002/nme.1620241211
  8. Choi C.K. and Schnobrich W.C., Nonconforming finite element analysis of shells, J. Eng. Mech. Div. ASCE, 101, 447-464, 1975
  9. Choi C.K. and Yoo S.W., Combined use of multiple improvement techniques in degenerated shell element, Comput. Struct., 39, 5, 557-569, 1991 https://doi.org/10.1016/0045-7949(91)90064-S
  10. Lee S.J. and Kanok-Nuchulchai W., A nine-node assumed strain finite element for large deformation analysis of laminated shells, International Journal for Numerical Methods in Engineering, 42, 4, p.p. 777-798, 1998 https://doi.org/10.1002/(SICI)1097-0207(19980715)42:5<777::AID-NME365>3.0.CO;2-P
  11. Hughes T.J.R., Cottrell J.A. and Bazilevs Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195, 2005 https://doi.org/10.1016/j.cma.2004.10.008
  12. Piegel L. and Tiller W., The NURBS Book, Springer-Verlag(Berlin Heidelberg), 1995
  13. Cottrell J.A., Hughes T.J.R. and Bazilevs Y., Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley, Chichester, 2009
  14. 이상진, 김하룡, RM이론에 기저한 등기하해석법을 이용한 판의 해석, 28, 9, 75-82, 2012
  15. Uhm T.K. and Youn S.K., T-spline finite element method for the analysis of shell structures, Int. J. Numer. Meth. Engng., 80, 507-536, 2009 https://doi.org/10.1002/nme.2648
  16. Hinton E. and Owen D.R.J., Finite element software for plates and shells, Swansea, UK, Pineridge Press, 1984
  17. Zienkiewicz O.C., Xu Z., Ling F.Z., Samuelsson A. and Wiberg N.E., Linked interpolation for Reissner.Mindlin plate element: part I-a simple quadrilateral Int. J. Numer. Meth. Engng, 36, 3043-3056, 1993 https://doi.org/10.1002/nme.1620361802
  18. Soh A.K., Long Z.F. and Cen S., A new nine DOF triangular element for analysis of thick and thin plates, Computational Mech, 24, 408.417, 1999 https://doi.org/10.1007/s004660050461
  19. Weissman S.L. and Taylor R.L., Resultant field for mixed plate bending elements, Comput. Methods Appl. Mech. Eng., 79, 321-355, 1990 https://doi.org/10.1016/0045-7825(90)90067-V
  20. Belytschko T., Stolarski H., Liu W.K., Carpenter N. and Ong J.S.-J., Stress projection for membrane and shear locking in shell finite elements, Comput. Methods Appl. Mech. Eng., 51, 221-258, 1985 https://doi.org/10.1016/0045-7825(85)90035-0