DOI QR코드

DOI QR Code

Diet, microbiota, and inflammatory bowel disease: lessons from Japanese foods

  • Kanai, Takanori (Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine) ;
  • Matsuoka, Katsuyoshi (Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine) ;
  • Naganuma, Makoto (Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine) ;
  • Hayashi, Atsushi (Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine) ;
  • Hisamatsu, Tadakazu (Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine)
  • Received : 2014.06.03
  • Accepted : 2014.06.22
  • Published : 2014.07.01

Abstract

The incidence and prevalence of inflammatory bowel diseases (IBDs) including ulcerative colitis and Crohn disease are rapidly increasing in Western countries and in developed Asian countries. Although biologic agents targeting the immune system have been effective in patients with IBD, cessation of treatment leads to relapse in the majority of patients, suggesting that intrinsic immune dysregulation is an effect, not a cause, of IBD. Dramatic changes in the environment, resulting in the dysregulated composition of intestinal microbiota or dysbiosis, may be associated with the fundamental causes of IBD. Japan now has upgraded water supply and sewerage systems, as well as dietary habits and antibiotic overuse that are similar to such features found in developed Western countries. The purpose of this review article was to describe the association of diet, particularly Japanese food and microbiota, with IBD.

Keywords

References

  1. Japan Intractable Diseases Information Center. Annual report 2012 from Japan Intractable Diseases Information Center [Internet]. [place unknown]: Japan Intractable Diseases Information Center, 2014 [cited 2014 May 1]. Available from: http://www.nanbyou.or.jp/entry/1356.
  2. Asakura H, Suzuki K, Kitahora T, Morizane T. Is there a link between food and intestinal microbes and the occurrence of Crohn's disease and ulcerative colitis? J Gastroenterol Hepatol 2008;23:1794-1801. https://doi.org/10.1111/j.1440-1746.2008.05681.x
  3. Danese S, Fiocchi C. Ulcerative colitis. N Engl J Med 2011;365:1713-1725. https://doi.org/10.1056/NEJMra1102942
  4. Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inf lammatory bowel diseases with time, based on systematic review. Gastroenterology 2012;142:46-54. https://doi.org/10.1053/j.gastro.2011.10.001
  5. Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012;491:119-124. https://doi.org/10.1038/nature11582
  6. Aujnarain A, Mack DR, Benchimol EI. The role of the environment in the development of pediatric inf lammatory bowel disease. Curr Gastroenterol Rep 2013;15:326. https://doi.org/10.1007/s11894-013-0326-4
  7. Leone V, Chang EB, Devkota S. Diet, microbes, and host genetics: the perfect storm in inflammatory bowel diseases. J Gastroenterol 2013;48:315-321. https://doi.org/10.1007/s00535-013-0777-2
  8. Goldsmith JR, Sartor RB. The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J Gastroenterol 2014;49:785-798. https://doi.org/10.1007/s00535-014-0953-z
  9. Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 2014;146:1489-1499. https://doi.org/10.1053/j.gastro.2014.02.009
  10. Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol 2012;9:599-608. https://doi.org/10.1038/nrgastro.2012.152
  11. Kaur N, Chen CC, Luther J, Kao JY. Intestinal dysbiosis in inf lammatory bowel disease. Gut Microbes 2011;2:211-216. https://doi.org/10.4161/gmic.2.4.17863
  12. Knights D, Lassen KG, Xavier RJ. Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome. Gut 2013;62:1505-1510. https://doi.org/10.1136/gutjnl-2012-303954
  13. Neuman MG, Nanau RM. Inf lammatory bowel disease: role of diet, microbiota, life style. Transl Res 2012;160:29-44. https://doi.org/10.1016/j.trsl.2011.09.001
  14. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334:105-108. https://doi.org/10.1126/science.1208344
  15. Sommer F, Backhed F. The gut microbiota: masters of host development and physiology. Nat Rev Microbiol 2013;11:227-238. https://doi.org/10.1038/nrmicro2974
  16. Cho I, Yamanishi S, Cox L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 2012;488:621-626. https://doi.org/10.1038/nature11400
  17. Ivanov, II, Honda K. Intestinal commensal microbes as immune modulators. Cell Host Microbe 2012;12:496-508. https://doi.org/10.1016/j.chom.2012.09.009
  18. Human Microbiome Project Consortium. A framework for human microbiome research. Nature 2012;486:215-221. https://doi.org/10.1038/nature11209
  19. Blaser M, Bork P, Fraser C, Knight R, Wang J. The microbiome explored: recent insights and future challenges. Nat Rev Microbiol 2013;11:213-217. https://doi.org/10.1038/nrmicro2973
  20. Blumberg R, Powrie F. Microbiota, disease, and back to health: a metastable journey. Sci Transl Med 2012;4:137rv137.
  21. Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 2011;9:279-290. https://doi.org/10.1038/nrmicro2540
  22. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012;148:1258-1270. https://doi.org/10.1016/j.cell.2012.01.035
  23. Kamada N, Seo SU, Chen GY, Nunez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 2013;13:321-335. https://doi.org/10.1038/nri3430
  24. Tyler AD, Smith MI, Silverberg MS. Analyzing the human microbiome: a "how to" guide for physicians. Am J Gastroenterol 2014 Apr 22 [Epub]. http://dx.doi. org/10.1038/ajg.2014.73.
  25. Cox MJ, Cookson WO, Moffatt MF. Sequencing the human microbiome in health and disease. Hum Mol Genet 2013;22(R1):R88-R94. https://doi.org/10.1093/hmg/ddt398
  26. McCarthy JJ, McLeod HL, Ginsburg GS. Genomic medicine: a decade of successes, challenges, and opportunities. Sci Transl Med 2013;5:189sr184.
  27. Weinstock GM. Genomic approaches to studying the human microbiota. Nature 2012;489:250-256. https://doi.org/10.1038/nature11553
  28. Sweeney TE, Morton JM. The human gut microbiome: a review of the effect of obesity and surgically induced weight loss. JAMA Surg 2013;148:563-569. https://doi.org/10.1001/jamasurg.2013.5
  29. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet 2012;13:260-270. https://doi.org/10.1038/nrg3182
  30. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009;9:313-323. https://doi.org/10.1038/nri2515
  31. Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 2012;10:735-742. https://doi.org/10.1038/nrmicro2876
  32. Simren M, Barbara G, Flint HJ, et al. Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut 2013;62:159-176. https://doi.org/10.1136/gutjnl-2012-302167
  33. Power SE, O'Toole PW, Stanton C, Ross RP, Fitzgerald GF. Intestinal microbiota, diet and health. Br J Nutr 2014;111:387-402. https://doi.org/10.1017/S0007114513002560
  34. Walsh CJ, Guinane CM, O'Toole PW, Cotter PD. Benef icial modulation of the gut microbiota. FEBS Lett 2014 Mar 26 [Epub]. http://dx.doi.org/10.1016/j.febslet. 2014.03.035.
  35. Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013;500:541-546. https://doi.org/10.1038/nature12506
  36. Holmes E, Li JV, Marchesi JR, Nicholson JK. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab 2012;16:559-564. https://doi.org/10.1016/j.cmet.2012.10.007
  37. Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science 2012;336:1262-1267. https://doi.org/10.1126/science.1223813
  38. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010;107:14691-14696. https://doi.org/10.1073/pnas.1005963107
  39. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature 2012;486:222-227.
  40. D'Haens GR, Sartor RB, Silverberg MS, Petersson J, Rutgeerts P. Future directions in inf lammatory bowel disease management. J Crohns Colitis 2014 Apr 14 [Epub]. http://dx.doi.org/10.1016/j.crohns.2014.02.025.
  41. Richman E, Rhodes JM. Review article: evidence-based dietary advice for patients with inf lammatory bowel disease. Aliment Pharmacol Ther 2013;38:1156-1171. https://doi.org/10.1111/apt.12500
  42. Guarner F. Hygiene, microbial diversity and immune regulation. Curr Opin Gastroenterol 2007;23:667-672. https://doi.org/10.1097/MOG.0b013e3282eeb43b
  43. Spooren CE, Pierik MJ, Zeegers MP, Feskens EJ, Masclee AA, Jonkers DM. Review article: the association of diet with onset and relapse in patients with inf lammatory bowel disease. Aliment Pharmacol Ther 2013;38:1172-1187. https://doi.org/10.1111/apt.12501
  44. Hou JK, Lee D, Lewis J. Diet and inflammatory bowel disease: review of patient-targeted recommendations. Clin Gastroenterol Hepatol 2013 Oct 6 [Epub]. http://dx.doi.org/10.1016/j.cgh.2013.09.06.
  45. Ananthakrishnan AN, Khalili H, Konijeti GG, et al. A prospective study of long-term intake of dietary fiber and risk of Crohn's disease and ulcerative colitis. Gastroenterology 2013;145:970-977. https://doi.org/10.1053/j.gastro.2013.07.050
  46. Devkota S, Chang EB. Nutrition, microbiomes, and intestinal inf lammation. Curr Opin Gastroenterol 2013;29:603-607. https://doi.org/10.1097/MOG.0b013e328365d38f
  47. Veldhoen M, Brucklacher-Waldert V. Dietary influences on intestinal immunity. Nat Rev Immunol 2012;12:696-708. https://doi.org/10.1038/nri3299
  48. Garrett WS, Lord GM, Punit S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 2007;131:33-45. https://doi.org/10.1016/j.cell.2007.08.017
  49. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444:1027-1031. https://doi.org/10.1038/nature05414
  50. Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011;331:337-341. https://doi.org/10.1126/science.1198469
  51. Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013;500:232-236. https://doi.org/10.1038/nature12331
  52. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe- derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013;504:446-450. https://doi.org/10.1038/nature12721
  53. Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013;504:451-455. https://doi.org/10.1038/nature12726
  54. Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013;341:569-573. https://doi.org/10.1126/science.1241165
  55. Hayashi A, Sato T, Kamada N, et al. A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice. Cell Host Microbe 2013;13:711-722. https://doi.org/10.1016/j.chom.2013.05.013
  56. Devkota S, Wang Y, Musch MW, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature 2012;487:104-108. https://doi.org/10.1038/nature11225
  57. Takaishi H, Matsuki T, Nakazawa A, et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inf lammatory bowel disease. Int J Med Microbiol 2008;298:463-472. https://doi.org/10.1016/j.ijmm.2007.07.016
  58. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013;368:407-415. https://doi.org/10.1056/NEJMoa1205037
  59. Kahn SA, Vachon A, Rodriquez D, et al. Patient perceptions of fecal microbiota transplantation for ulcerative colitis. Inflamm Bowel Dis 2013;19:1506-1513. https://doi.org/10.1097/MIB.0b013e318281f520
  60. Smits LP, Bouter KE, de Vos WM, Borody TJ, Nieuwdorp M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology 2013;145:946-953. https://doi.org/10.1053/j.gastro.2013.08.058

Cited by

  1. Inflammatory Bowel Disease in Asia: The Challenges and Opportunities vol.13, pp.3, 2015, https://doi.org/10.5217/ir.2015.13.3.188
  2. Dysbiotic gut microbiome: A key element of Crohn's disease vol.43, pp.None, 2014, https://doi.org/10.1016/j.cimid.2015.10.005
  3. Indole compounds may be promising medicines for ulcerative colitis vol.51, pp.9, 2016, https://doi.org/10.1007/s00535-016-1220-2
  4. Advances in nutritional therapy in inflammatory bowel diseases: Review vol.22, pp.3, 2016, https://doi.org/10.3748/wjg.v22.i3.1045
  5. Diet and nutritional factors in inflammatory bowel diseases vol.22, pp.3, 2014, https://doi.org/10.3748/wjg.v22.i3.895
  6. Influence of environmental factors in the development of inflammatory bowel diseases vol.7, pp.1, 2014, https://doi.org/10.4292/wjgpt.v7.i1.112
  7. Isomaltodextrin Prevents DSS-induced Colitis by Strengthening Tight Junctions in Mice vol.23, pp.2, 2014, https://doi.org/10.3136/fstr.23.305
  8. Prebiotics and synbiotics in ulcerative colitis vol.52, pp.4, 2014, https://doi.org/10.1080/00365521.2016.1263680
  9. Efficacy and safety of ustekinumab in Japanese patients with moderately to severely active Crohn's disease: a subpopulation analysis of phase 3 induction and maintenance studies vol.15, pp.4, 2014, https://doi.org/10.5217/ir.2017.15.4.475
  10. The relationship between socio-demographic factors, health status, treatment type, and employment outcome in patients with inflammatory bowel disease in Japan vol.17, pp.1, 2014, https://doi.org/10.1186/s12889-017-4516-0
  11. Novel probiotics isolated from a Japanese traditional fermented food, Funazushi, attenuates DSS-induced colitis by increasing the induction of high integrin αv/β8-expressing dendritic cells vol.53, pp.3, 2014, https://doi.org/10.1007/s00535-017-1362-x
  12. Biologic treatment of Japanese patients with inflammatory bowel disease vol.18, pp.None, 2014, https://doi.org/10.1186/s12876-018-0892-x
  13. Delineating inflammatory bowel disease through transcriptomic studies: current review of progress and evidence vol.16, pp.3, 2018, https://doi.org/10.5217/ir.2018.16.3.374
  14. Diet and longevity: The effects of traditional eating habits on human lifespan extension vol.11, pp.3, 2018, https://doi.org/10.3233/mnm-180225
  15. Clinical and Genetic Aspects of Behçet's Disease in Japan vol.58, pp.9, 2014, https://doi.org/10.2169/internalmedicine.2035-18
  16. Pyroglutamyl leucine, a peptide in fermented foods, attenuates dysbiosis by increasing host antimicrobial peptide vol.3, pp.1, 2014, https://doi.org/10.1038/s41538-019-0050-z
  17. Ernährung bei entzündlichen Darmerkrankungen vol.2, pp.3, 2014, https://doi.org/10.1159/000509482
  18. Extracts and Marine Algae Polysaccharides in Therapy and Prevention of Inflammatory Diseases of the Intestine vol.18, pp.6, 2014, https://doi.org/10.3390/md18060289
  19. Dietary Components, Microbial Metabolites and Human Health: Reading between the Lines vol.9, pp.8, 2014, https://doi.org/10.3390/foods9081045
  20. Diet-Microbiota Interactions in Inflammatory Bowel Disease vol.13, pp.5, 2021, https://doi.org/10.3390/nu13051533