DOI QR코드

DOI QR Code

옥수수 재배 시 퇴비 및 바이오차 시용 토양에서 질소 이동 동태

Nitrogen Transformation in Soil Cooperated with Organic Composts and Bio-char During Corn (Zea mays) Cultivation

  • 신중두 (국립농업과학원 기후변화생태과)
  • Shin, JoungDu (Department of Climate Change & Ecology, National Academy of Agricultural Science)
  • 투고 : 2014.09.02
  • 심사 : 2014.09.20
  • 발행 : 2014.09.30

초록

본 연구의 목적은 옥수수 재배 기간 동안 퇴비 및 바이오차를 시용한 토양에서 질소 무기화와 질산화율을 평가하였으며, 또한 유거수에 의한 총 탄소 및 질소 유실량을 산정하는 것이었다. 본 실험에 사용된 토성은 식양토였고, 비료 시용량은 토양검정 시비량으로서 $230-107-190kg\;ha^{-1}$($N-P_2O_5-K_2O$)이었으며, 바이오차 시용량은 토양무게 기준 0.2%이었다. 토양 시료는 15일 간격으로 채취하였으며, 시험구는 우분, 돈분 및 호기액비 처리구 와 각각의 처리구에 바이오차를 혼용하였다. 질소 무기화 및 질산화율은 일반적으로 파종 후 45일 토양 시료를 제외하고 유기성 퇴비만 시용한 구에 비해 바이오차를 혼용한 구에서 더 낮게 나타났으며, 호기액비 처리구에서 가장 높게 관측되었다. 유거수에 의한 총 탄소의 유실은 $1.5{\sim}3.0kg\;ha^{-1}$범위이었으며, 바이오차를 혼용한 돈분처리구에서만 $0.4kg\;ha^{-1}$ 저감되는 것으로 평가되었다. 또한 바이오차를 혼용함으로서 총 질소량이 돈분 및 호기소화액 처리구에서 각각 4.2 (15.1%) 와 $3.8(11.8%)kg\;ha^{-1}$이 줄어드는 것으로 나타났다.

This study were conducted to evaluate the N mineralization and nitrification rates and to estimate the losses of total carbon and nitrogen by runoff water in soils cooperated with organic composts and bio-char during corn cultivation. For the experiment, the soil texture used in this study was clay loam, and application rates of chemical fertilizer and bio-char were $230-107-190kg\;ha^{-1}$($N-P_2O_5-K_2O$) as recommended amount after soil test and 0.2% to soil weight. The soil samples were periodically taken at every 15 day intervals during the experimental periods. The treatments were consisted of cow compost, pig compost, swine digestate from aerobic digestion system, and their bio-char cooperation. For N mineralization and nitrification rates, it was shown that there were generally low in the soil cooperated with bio-char as compared to the only application plots of different organic composts except for 47 days after sowing. Also, they were observed to be highest in the application plot of swine digestate from aerobic digestion system. For loss of total carbon by run-off water, it was ranged from 1.5 to $3.0kg\;ha^{-1}$ in the different organic compost treatment plots. However, Loss of total carbon with bio-char could be reduced at $0.4kg\;ha^{-1}$ in PC treatment plot. Also, with application of bio-char, total nitrogen was estimated to be reduced at 4.2 (15.1%) and $3.8(11.8%)kg\;ha^{-1}$ in application plots of pig compost and swine aerobic digestate, respectively.

키워드

과제정보

연구 과제 주관 기관 : National Academy of Agricultural Science

참고문헌

  1. Laird, A.D., 2008. The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron. J. 100(1), 178-184. https://doi.org/10.2134/agrojnl2007.0161
  2. Lehmann, J., Kern, D.C., Glaser, B., Woods, W.I. (Eds.), 2004. Management. Kluwer Academic Publishers, New York.
  3. Mathews, J.A., 2008. Carbon-negative biofuels. Energy Policy. 36, 940-945. https://doi.org/10.1016/j.enpol.2007.11.029
  4. Ding, Y., Liu, Y., Wu, W., Shi, D., Yang, M., Zhong, Z., 2010. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Pollut. 213(1), 448-453.
  5. Lehmann, J., Pereira da Silva, J., Steiner, C., Nehls, T., Zech, W., Glaser, B., 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil. 249(2), 343-357. https://doi.org/10.1023/A:1022833116184
  6. Steiner, C., Das, K., Melear, N., Lakly, D., 2010. Reducing nitrogen loss during poultry litter composting using biochar, J. Environ. Qual. 39, 1236-1242. https://doi.org/10.2134/jeq2009.0337
  7. Taghizadeh-Toosi, A., Clough, T,J,. Sherlock, R.R., Condron, L.M., 2012. Biochar adsorbed ammonia is bioavailable, Plant Soil. 350(1-2), 57-69. https://doi.org/10.1007/s11104-011-0870-3
  8. Deluca, T.H., Mackenzie, M.D., Gundale, M.J., Holben, W.E., 2006. Wieldfireproduced charcoal directly influences nitrogen cycling in Ponderosa Pine forests. Soil Sci. Soc. Am. J. 70 (2), 448-453. https://doi.org/10.2136/sssaj2005.0096
  9. Steiner, C., Glaser, B., Teixeira, W.G., Lehmann, J., Blum, W.E.H., Zech, W., 2008. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal, J. Plant Nutr. Soil Sci. 171(6), 893-899. https://doi.org/10.1002/jpln.200625199
  10. Clough, T., Bertram, J., Ray, J., Condron, L., O'Callaghan, M., Sherlock, R., Wells, N., 2010. Unweathered wood bio-char impact on nitrous oxide emissions from a bovine-urine amended pasture soil. Soil Sci. Soc. Am. J. 74(3), 852. https://doi.org/10.2136/sssaj2009.0185
  11. 11. Laird, D., Fleming, P., Wang, B., Horton, R., Karlen, D., 2010, Biochar impact on nutrient leaching from a Midwestern agricultural soil, Geoderma. 158(3-4), 436-442. https://doi.org/10.1016/j.geoderma.2010.05.012
  12. Knowles, O.A., Robinson, B.H., Contangelo, A., Clucas, L., 2011. Biochar for the mitigation of nitrate leaching from soil amended with biosolids, Sci. Total Environ. 409 (17), 3206-3210. https://doi.org/10.1016/j.scitotenv.2011.05.011
  13. Clough, T., Condron, L., Kammann, C., M ller, C., 2013. A review of biochar and soil nitrogen dynamics. Agronomy. 3, 275-293. https://doi.org/10.3390/agronomy3020275
  14. Biederman L., A. and Harpole, W., S., 2013. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy. 5, 202-214. https://doi.org/10.1111/gcbb.12037
  15. Rondon, M., Ramirez, J.A., Lehmann, J., 2005. Greenhouse gas emissions decrease with charcoal additions to tropical soils, http://soil carbon center.k- state.edu/conference/USDA/Abstracts/html/Abstract/Rondon.htm.
  16. Lehmann, J., 2009. Biological carbon sequestration must and can be a win-win approach. Climatic Change. 97, 459-463. https://doi.org/10.1007/s10584-009-9695-y
  17. Kuzyakov, Y., I. Subbotina, H. Chen, I. Bogomolova, and X.Xu. 2009. Black carbon decomposition and incorporation into soil microbial biomass estimated 14C labeling. Soil Biology and Biochemistry 41:210-219. https://doi.org/10.1016/j.soilbio.2008.10.016