References
- Altunisik, A.C., Bayraktar, A. and Ozdemir, H. (2012), "Seismic safety assessment of eynel highway steel bridge using ambient vibration measurements", Smart Struct. Syst., 10(2), 131-154. https://doi.org/10.12989/sss.2012.10.2.131
- Atkinson, K.E. (2008), An introduction to numerical analysis, John Wiley & Sons.
- Bani-Hani, K.A., Zibdeh, H.S. and Hamdaoui, K. (2008), "Health monitoring of a historical monument in Jordan based on ambient vibration test", Smart Struct. Syst., 4(2), 195-208. https://doi.org/10.12989/sss.2008.4.2.195
- Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Digest, 30, 91-105. https://doi.org/10.1177/058310249803000201
- Foss, G. and Haugse, E. (1995), "Using modal test results to develop strain to displacement transformations", Proceedings of the 13th Int. Modal Analysis Conf.
- Gindy, M., Nassif, H.H. and Velde, J. (2008), "Bridge displacement estimates from measured acceleration records", Transport. Res. Rec., 2028, 136-145.
- Jung, B.S., Kim, N.S. and Koon, S.K. (2006), "Estimation of displacement responses using the wavelet decomposition signal", J. Korea Concrete Inst., 18(3), 347-354. https://doi.org/10.4334/JKCI.2006.18.3.347
- Kandula, V., DeBrunner, L., DeBrunner, V. and Rambo-Roddenberry, M. (2012), "Field testing of indirect displacement estimation using accelerometers", Proceedings of the Conf. Record of the 46th Asilomar Conf. Signals, Systems, and Computers.
- Kang, L.H., Kim, D.K. and Han, J.H. (2007), "Estimation of dynamic structural displacements using fiber Bragg grating strain sensors", J. Sound Vib., 305(3), 534-542. https://doi.org/10.1016/j.jsv.2007.04.037
- Koo, K.Y., Sung, S.H., Park, J.W. and Jung, H.J. (2010), "Damage detection of shear buildings using deflections obtained by modal flexibility", Smart Mat. Struct., 19(11), 115026. https://doi.org/10.1088/0964-1726/19/11/115026
- Kim, J.T., Ho, D.D., Nguyen, K.D., Hong, D.S., Shin, S.W., Yun, C.B. and Shinozuka, M. (2013), "System identification of a cable-stayed bridge using vibration responses measured by a wireless sensor network", Smart Struct. Syst., 11(5), 533-553. https://doi.org/10.12989/sss.2013.11.5.533
- Lee, J.J. and Shinozuka, M. (2006), "A vision-based system for remote sensing of bridge displacement", NDT & E Int., 39(5), 425-431. https://doi.org/10.1016/j.ndteint.2005.12.003
- Lee, H.S., Hong, Y.H. and Park, H.W. (2010), "Design of an FIR filter for the displacement reconstruction using measured acceleration in low-frequency dominant structures", Int. J. Numer. Meth. Eng., 82(4), 403-434.
- Ma, T.W., Bell, M., Lu, W. and Xu, N.S. (2014), "Recovering structural displacements and velocities from acceleration", Smart Struct. Syst., 14(2), 191-207. https://doi.org/10.12989/sss.2014.14.2.191
- Nassif, H.H., Gindy, M. and Davis, J.(2005), "Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration", NDT & E Int., 38(3), 213-218. https://doi.org/10.1016/j.ndteint.2004.06.012
- Park, J.W., Sim, S.H. and Jung, H.J. (2013), "Displacement estimation using multimetric data fusion", IEEE/ASME Trans. Mechatronics, 18(6), DOI: 10.1109/TMECH.2013.2275187.
- Park, K.T., Kim, S.H., Park, H.S. and Lee, K.W. (2005), "The determination of bridge displacement using measured acceleration", Eng. Struct., 27(3), 371-378. https://doi.org/10.1016/j.engstruct.2004.10.013
- Ribeiro, J.G.T., Freire, J.L.F. and Castro, J.T.P. (1997), "Problems in analogue double integration to determine displacements from acceleration data", Proceedings of the 15th Int. Modal Anal. Conf.
- Shin, S., Lee, S.U. and Kim, N.S. (2012), "Estimation of bridge displacement responses using FBG sensors and theoretical mode shapes," Struct. Eng. Mech., 42(2), 229-245. https://doi.org/10.12989/sem.2012.42.2.229
- Ye, X.W., Ni, Y.Q., Wai, T.T., Wong, K.Y., Zhang, X.M. and Xu, F. (2013)."A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification", Smart Struct. Syst., 12(3-4), 363-379. https://doi.org/10.12989/sss.2013.12.3_4.363
- Yi, J.H., Cho, S., Koo, K.Y., Yun, C.B., Kim, J.T., Lee, C.G. and Lee, W.T. (2007), "Structural performance evaluation of a steel-plate girder bridge using ambient acceleration measurements", Smart Struct. Syst., 3(3), 281-298. https://doi.org/10.12989/sss.2007.3.3.281
- Zhou, C., Li, H.N., Li, D.S., Lin, Y.X. and Yi, T.H. (2013), "Online damage detection using pair cointegration method of time-varying displacement", Smart Struct. Syst., 12(3-4), 309-325. https://doi.org/10.12989/sss.2013.12.3_4.309
Cited by
- Computer Vision-Based Structural Displacement Measurement Robust to Light-Induced Image Degradation for In-Service Bridges vol.17, pp.10, 2017, https://doi.org/10.3390/s17102317
- SOUNDNESS EVALUATION OF BRIDGE BEARING BASED ON TWO PLACES DISPLACEMENT MEASUREMENT USING MEMS ACCELEROMETERS vol.73, pp.2, 2017, https://doi.org/10.2208/jscejam.73.I_649
- Determination Method of Bridge Rotation Angle Response Using MEMS IMU vol.16, pp.12, 2016, https://doi.org/10.3390/s16111882
- Estimation of flexibility matrix of beam structures using multisensor fusion vol.1, pp.2, 2016, https://doi.org/10.1080/24705314.2016.1179494
- Displacement estimation of bridge structures using data fusion of acceleration and strain measurement incorporating finite element model vol.15, pp.3, 2015, https://doi.org/10.12989/sss.2015.15.3.645
- Technique for Determining Bridge Displacement Response Using MEMS Accelerometers vol.16, pp.12, 2016, https://doi.org/10.3390/s16020257
- Traffic Safety Evaluation for Railway Bridges Using Expanded Multisensor Data Fusion vol.31, pp.10, 2016, https://doi.org/10.1111/mice.12210
- Multi-point displacement monitoring of bridges using a vision-based approach vol.20, pp.2, 2015, https://doi.org/10.12989/was.2015.20.2.315
- Structural damage identification via response reconstruction under unknown excitation vol.24, pp.8, 2017, https://doi.org/10.1002/stc.1953
- Real-time monitoring system for local storage and data transmission by remote control vol.112, 2017, https://doi.org/10.1016/j.advengsoft.2017.06.010
- Reconstruction of Unmeasured Strain Responses in Bottom-fixed Offshore Structures by Multimetric Sensor Data Fusion vol.188, 2017, https://doi.org/10.1016/j.proeng.2017.04.461
- Visualization system for bridge deformations under live load based on multipoint simultaneous measurements of displacement and rotational response using MEMS sensors vol.146, 2017, https://doi.org/10.1016/j.engstruct.2017.05.036
- Experimental validation of Kalman filter-based strain estimation in structures subjected to non-zero mean input vol.15, pp.2, 2015, https://doi.org/10.12989/sss.2015.15.2.489
- Issues in structural health monitoring for fixed-type offshore structures under harsh tidal environments vol.15, pp.2, 2015, https://doi.org/10.12989/sss.2015.15.2.335
- Reference-Free Displacement Estimation of Bridges Using Kalman Filter-Based Multimetric Data Fusion vol.2016, 2016, https://doi.org/10.1155/2016/3791856
- Validation of a Data-fusion Based Solution in view of the Real-Time Monitoring of Cable-Stayed Bridges vol.199, 2017, https://doi.org/10.1016/j.proeng.2017.09.279
- Long-Term Deflection Prediction from Computer Vision-Measured Data History for High-Speed Railway Bridges vol.18, pp.5, 2018, https://doi.org/10.3390/s18051488
- Reliability Assessment of Deflection Limit State of a Simply Supported Bridge using vibration data and Dynamic Bayesian Network Inference vol.19, pp.4, 2019, https://doi.org/10.3390/s19040837
- Quasi real-time and continuous non-stationary strain estimation in bottom-fixed offshore structures by multimetric data fusion vol.23, pp.1, 2019, https://doi.org/10.12989/sss.2019.23.1.061
- Field Verification over One Year of a Portable Bridge Weigh-in-Motion System for Steel Bridges vol.24, pp.7, 2014, https://doi.org/10.1061/(asce)be.1943-5592.0001411
- Bridge Displacement Estimation Using a Co-Located Acceleration and Strain vol.20, pp.4, 2014, https://doi.org/10.3390/s20041109
- Long-term displacement measurement of full-scale bridges using camera ego-motion compensation vol.140, pp.None, 2014, https://doi.org/10.1016/j.ymssp.2020.106651
- Structural sensing with deep learning: Strain estimation from acceleration data for fatigue assessment vol.35, pp.12, 2014, https://doi.org/10.1111/mice.12565
- Estimation of Structural Deformed Configuration for Bridges Using Multi-Response Measurement Data vol.11, pp.9, 2014, https://doi.org/10.3390/app11094000