초록
Container vessel sizes have constantly increased over the past two decades. With increasing ship sizes and higher container loading capacities, the adoption of lashing bridges has also increased. Today's lashing bridge designs range from 1st tier to 3rd tier lashing bridges. Container securing program of the past which is based on two lashing rods and 1st tier lashing bridge has to be improved to be suitable for the present time. The equilibrium equations in this study are established to cover the application of 3~4 lashing rods and 2nd~3rd tier lashing bridges. In addition developed program is improved to be able to calculate the reaction forces and optimum arrangement under the external lashing. An optimization algorithm which is suitable for the container securing problems involved the equality constraint has been also adopted in this study.