DOI QR코드

DOI QR Code

Evaluation of Anaerobic Fermentation and Nitrate Removal Efficiency of Sewage Sludge Pre-treated with Electrolysis

전기분해 전처리 슬러지의 혐기성 소화 및 질산염 제거효율 평가

  • Kim, Jaehyung (Graduate School of Energy & Environment, Seoul National University of Science and Technology) ;
  • Jeon, Hyeyeon (Graduate School of Energy & Environment, Seoul National University of Science and Technology) ;
  • Pak, Daewonk (Graduate School of Energy & Environment, Seoul National University of Science and Technology)
  • 김재형 (서울과학기술대학교 에너지환경대학원) ;
  • 전혜연 (서울과학기술대학교 에너지환경대학원) ;
  • 박대원 (서울과학기술대학교 에너지환경대학원)
  • Received : 2014.02.03
  • Accepted : 2014.03.12
  • Published : 2014.03.31

Abstract

This study was performed with electrolysis treatment method for improving anaerobic digestion gas production efficiency in a sewage sludge, thereby confirmed in anaerobic digestion production and denitrification effect. As a result, solubilization was increased by increasing treatment time of electrolysis and current density, also showed to be 9.02% with 10 mA/cm2 of current density in 4 mm electrode distance. Based on the results of BMP test used the above experiment, methane production was 0.49 L CH4/g VS, and increased by 88.4% compared with control groups. As for the results of denitrification using the sewage sludge treated with the same conditions, denitrification rate appeared $19.2mg\;NO_3{^{-}}N/g\;MLVSS{\cdot}hr$, and through the sewage sludge treated with electrolysis, it can be applied to anaerobic digestion and denitrification process by increasing biodegradation.

본 연구에서는 하수슬러지의 소화가스 생산 효율향상을 위해 전기분해 처리방법을 수행하고 이를 소화가스 생산과 탈질실험 효과를 확인하였다. 전기분해 처리시간, 전류밀도가 증가함에 따라 가용화율은 증가하였으며 전극간격 4 mm에서 전류밀도 10 mA/cm2로 60분 처리 시 가용화율은 9.02%를 보였다. 이를 이용하여 BMP실험을 진행한 결과 0.49 L CH4/g VS의 메탄생산량을 보이며 대조군대비 88.4% 증가함을 보였다. 같은 조건으로 처리된 하수슬러지를 이용하여 탈질실험을 진행한 결과 $19.2mg\;NO_3{^{-}}N/g\;MLVSS{\cdot}hr$의 탈질율을 보였으며 이를 통해 전기분해 처리된 하수슬러지는 생분해성이 증대됨에 따라 혐기성소화와 탈질공정에도 적용이 가능한 것으로 확인되었다.

Keywords

References

  1. 환경부, "미래지향형 하수처리 시스템에 대한 기술동향; 기술동향보고서", 2011
  2. 환경부, 2012 하수도통계, 2013
  3. 배재근, "국내 하수슬러지 처리현황과 해결방안", 한국상하수도협회지, 2003, 3, 28-35
  4. H. Carrere, C. Dumas, A. Battimelli, D. J. Baststone, J. P. Delgenes, J. P. Steyer, I. Ferrer, "Pretreatment methods to improve sludge anaerobic degradability: A review", J. Hazard. Mater., 2000, 183, 1-15
  5. Y. Y. Li; T. Noike, "Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment", Water Sci. Technol., 1992, 26, 857-866
  6. X. Q. Zhang; P. L. Bishop, Biodegradability of biofilm extracellular polymric substances, Chemosphere, 2003, 50, 63-69 https://doi.org/10.1016/S0045-6535(02)00319-3
  7. Z. W. Wang; Y. Liu; J. H. Tay. Biodegradability of extracellular polymeric substances produced by aerobic granules, Appl. Microbiol. Biotechnol., 2007, 74, 462-466 https://doi.org/10.1007/s00253-006-0686-x
  8. M. R. Salsabil, A. Prorot, M. Casellas, C. Dagot, "Pre-treatment of activated sludge: Effect of sonication on aerobic and anaerobic digestibility", Chem. Eng. J., 2009, 148, 327-335 https://doi.org/10.1016/j.cej.2008.09.003
  9. H. Li, Y. Y. Jin, R. B. Mahar, Z. Y. Wang, Y. F. Nie, "Effects of ultrasonic disintegration on sludge microbial activity and dewaterability", J. Hazard. Mater., 2009, 161, 1421-1426 https://doi.org/10.1016/j.jhazmat.2008.04.113
  10. M. Dohanyos, J. Zabranska, J. Kutil, P. Jenicek, "Improvement of anaerobic digestion of sludge", Water Sci. Technol. 2004, 49, 89-96
  11. C. Fjordside, "An operating tale from Næstved Sewage Treatment Plant", in: Municipal wastewater treatment Nordic Conference, Copenhagen (Denmark), 2001
  12. X. Yang, X. Wang, L. Wang, "Transferring of components and energy output in industrial sewage sludge disposal by thermal pretreatment and two-phase anaerobic process", Bioresour. Technol. 2010, 101, 2580-2584 https://doi.org/10.1016/j.biortech.2009.10.055
  13. J. Kim, C. Park, T. H. Kim, M. Lee, S. Kim, S. W. Kim, J. Lee, "Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge", J. Biosci. Bioeng., 2003, 95, 271-275 https://doi.org/10.1016/S1389-1723(03)80028-2
  14. A. Valo, H. Carrere, J. P. Delgenes, "Thermal, chemical and thermo-chemical pre-treatment of waste activated sludge for anaerobic digestion", J. Chem. Technol. Biotechnol., 2004, 79 , 1197-1203 https://doi.org/10.1002/jctb.1106
  15. D. C. Stuckey, P. L. McCarty, "Thermochemical pretreatment of nitrogenous materials to increase methane yield", Biotechnol. Bioeng. Symp., 1978, 8, 219-233
  16. J. Rubio, M. L. Souza, R. W. Smith, "Overview of flotation as a wastewater treatment technique", Minerals engineering, 2002, 15, 139-155 https://doi.org/10.1016/S0892-6875(01)00216-3
  17. K. W. Cho, C. M. Chung, Y. J. Kim, T. H. Chung, "Continuous clarification and thickening of activated sludge by electrolytic bubbles under control of scale deposition", Bioresour. Technol., 2010, 101, 337-346 https://doi.org/10.1016/j.biortech.2009.08.022
  18. 이지선, 장인성, 이철구, 정선용, "전기분해에 의한 하수슬러지 가용 효과 연구", 한국산학기술학회논문지, 2011, 12, 979-984 https://doi.org/10.5762/KAIS.2011.12.2.979
  19. 김재형, 전혜연, 이준철, 박대원, "전기분해를 이용한 하수슬러지 가용화 연구", 에너지공학, 21(2), 194-201, 2012
  20. APHA, AWWA and WEF : Standard methods for the examination of water and wastewater, 20th ed. Baltimore, American Public Health Association 2, 1998
  21. H. P. Yuan, K. B. Cheng, S. P. Chen, N. W. Zhu, Z. Y. Zhou, "New sludge pretreatment method to improve dewaterability of waste activated sludge", Bioresour. Technol., 2011, 102, 5659-5664 https://doi.org/10.1016/j.biortech.2011.02.076
  22. M. F. Dignac, V. Urbain, D. Rybacki, A. Bruchet, D. Snidaro, P. Scribe, "Chemical description of extracellular polymers: implication on activated sludge floc structure", Water Sci. Technol., 1998, 38, 45-53
  23. B. Jin, B. M. Wilen, P. Lant, "Impacts of morphological, physical and chemical properties of sludge flocs on dewaterability of activated sludge", Chem. Eng. J., 2004, 98, 115-126 https://doi.org/10.1016/j.cej.2003.05.002
  24. K. Keiding, P. H. Nielsen, "Desorption of organic macromolecules from activated sludge: effect of ionic composition", Water Res., 1997, 31, 1665-1672 https://doi.org/10.1016/S0043-1354(97)00011-0
  25. D. Kasherman, M. Skyllas-kazacos, "Effets of anode-cathode distance on the cell potential and electrical bath resistivity in an aluminium electrolysis cell with a sloping TiB2 composite cathode", Journal of applied electrochemistry, 1988, 18, 863-868 https://doi.org/10.1007/BF01016043
  26. B. Tartakovsky, P. Mehta, J. S. Bourque, S. R. Guiot, "Electrolysis-enhanced anaerobic digestion of wastewater", Bioresour. Technol., 2011, 1002, 5685-5691.
  27. Metcalf and Eddy. Inc. 2003. Wastewater Engineering : Treatment, Disposal and Reuse. 4th ed., McGraw Hill. New York. 630-631