DOI QR코드

DOI QR Code

Molecular Taxonomical Re-classification of the Genus Suillus Micheli ex S. F. Gray in South Korea

  • Min, Young Ju (School of Biological Sciences, Seoul National University) ;
  • Park, Myung Soo (School of Biological Sciences, Seoul National University) ;
  • Fong, Jonathan J. (School of Biological Sciences, Seoul National University) ;
  • Seok, Soon Ja (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Han, Sang-Kuk (Forest Biodiversity Division, Korea National Arboretum) ;
  • Lim, Young Woon (School of Biological Sciences, Seoul National University)
  • Received : 2014.03.13
  • Accepted : 2014.05.22
  • Published : 2014.09.30

Abstract

The fungal genus Suillus Micheli ex S. F. Gray plays important roles in the survival and growth of plant seedlings. Humans have utilized these ectomycorrhizal fungi to enhance the nutrient uptake and defense systems of plants, particularly in the reforestation of coniferous forests. The genus Suillus is easily distinguishable by its distinctive morphological features, although the morphology of the fruiting body does not facilitate reliable interspecies discrimination. On the basis of micro-morphological features and internal transcribed spacer sequence analysis, we found that 51 of 117 Korean Suillus specimens had initially been misidentified. The list of the 12 Suillus species previously recorded in Korea was re-evaluated and revised to only eight distinct species: S. americanus, S. bovinus, S. granulatus, S. grevillei, S. luteus, S. pictus, S. placidus, and S. viscidus. We provide taxonomical descriptions for six of these species from the sample specimens.

Keywords

References

  1. Smith AH, Thiers HD. A contribution toward a monograph of North American species of Suillus. Ann Arbor: Lubrecht & Cramer Ltd.; 1964.
  2. Smith AH, Thiers HD. The boletes of Michigan. Ann Arbor: The University of Michigan Press; 1971.
  3. Sousa NR, Franco AR, Oliveira RS, Castro PM. Ectomycorrhizal fungi as an alternative to the use of chemical fertilisers in nursery production of Pinus pinaster. J Environ Manage 2012; 95 Suppl:S269-74. https://doi.org/10.1016/j.jenvman.2010.07.016
  4. Sanchez-Zabala J, Majada J, Martin-Rodrigues N, Gonzalez-Murua C, Ortega U, Alonso-Grana M, Arana O, Dunabeitia MK. Physiological aspects underlying the improved outplanting performance of Pinus pinaster Ait. seedlings associated with ectomycorrhizal inoculation. Mycorrhiza 2013;23:627-40. https://doi.org/10.1007/s00572-013-0500-4
  5. Turnau K, Przybylowicz WJ, Mesjasz-Przybylowicz J. Heavy metal distribution in Suillus luteus mycorrhizas: as revealed by micro-PIXE analysis. Nucl Instrum Methods Phys Res B 2001;181:649-58. https://doi.org/10.1016/S0168-583X(01)00631-0
  6. Adriaensen K, Vangronsveld J, Colpaert JV. Zinc-tolerant Suillus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza 2006;16:553-8. https://doi.org/10.1007/s00572-006-0072-7
  7. Kipfer T, Wohlgemuth T, van der Heijden MG, Ghazoul J, Egli S. Growth response of drought-stressed Pinus sylvestris seedlings to single- and multi-species inoculation with ectomycorrhizal fungi. PloS One 2012;7:e35275. https://doi.org/10.1371/journal.pone.0035275
  8. Corte A. Research on the influence of the mycorrhizal infection on the growth, vigor, and state of health of three Pinus species. Arch Bot Biogeogr Ital 1969;45:1.
  9. Bois G, Bigras FJ, Bertrand A, Piche Y, Fung MY, Khasa DP. Ectomycorrhizal fungi affect the physiological responses of Picea glauca and Pinus banksiana seedlings exposed to an NaCl gradient. Tree Physiol 2006;26:1185-96. https://doi.org/10.1093/treephys/26.9.1185
  10. Singer R. The Agaricales in modern taxonomy. Koenigstein: Koeltz Scientific Books; 1986.
  11. Micheli PA. Nova plantarum genera. Florence: Bernardi Paperinii; 1729.
  12. Gray SF. A natural arrangement of British plants. London: Baldwin, Cradock, and Joy; 1821.
  13. Kirk P, Cooper J. Index fungorum. CABI Bioscience database. Wallingford: CABI; 2010.
  14. Lee TS. The full list of recorded mushrooms in Korea. Kor J Mycol 1990;18:233-59.
  15. Seok SJ, Kim YS, Ryu YJ, Park DS. Higher fungi in Korea. Kor J Mycol 1995;23:144-52.
  16. Lee TS, Lee JY. Rearranged list of recorded mushrooms in Korea. Seoul: Korean Forest Research Institute; 2000.
  17. Park YW, Koo CD, Lee HY, Ryu SR, Kim TH, Cho YG. Relationship between macrofungi fruiting and environmental factors in Songnisan National Park. Korean J Environ Ecol 2010;24:657-68.
  18. Lee JY, Lee YW, Lim JH. Colored Illustrations of the Mushrooms of Korea. Seoul: Baemoongak; 1959.
  19. Kaburagi T. Korean and Manchurian practical manual of forest. Tokyo: Yokendo; 1940.
  20. Lee TS, Rhee YU. A list of the Korean fungi part II. Seoul: Central Forest Experiment Station; 1958. p. 24.
  21. Lee JY. Taxonomical studies on Korean higher fungi for the publication of colored illustrations. Kor J Mycol 1981;9:77-91.
  22. Cho DH. Colored illustrations of the mushrooms of Korea. Seoul: Academy Publishing; 2003.
  23. Hong SW, Chung HS. Fleshy basidiomycetes in Mt. Jogye. Korean J Bot 1977;20:29-43.
  24. Lee JY, Kim BK, Cho DH. Notes on Korean higher fungi IV. Kor J Mycol 1978;6:43-51.
  25. Shin GC, Bok JD, Kim YS. The fungal flora of Mt. Gyeryong National Park (II). Res Rep Environ Sci Technol 1984;2:14-23.
  26. Lee TS, Hong HP, Kim KH, Kim MS, Kim JS, Jung WH, Choi MS, Park KW, Won GJ, Lee SK. Mushroom collection and identification. Seoul: Korea Forest Research Institute; 1991. p. 368-417.
  27. Lee KJ, Kim YS. Distribution of ectomycorrhizal fungi in pure stands of eight forest tree species in Korea. Bull Seoul Natl Univ Arbor 1985;10:41-7.
  28. Pomerleau R, Smith AH. Fuscoboletinus, a new genus of the Boletales. Brittonia 1962;14:156-72. https://doi.org/10.2307/2805220
  29. Sutara J. The limit between the genera Boletinus and Suillus. Ces Mykol 1987;41:139-52.
  30. Kretzer A, Li Y, Szaro T, Bruns TD. Internal transcribed spacer sequences from 38 recognized species of Suillus sensu lato: phylogenetic and taxonomic implications. Mycologia 1996;88:776-85. https://doi.org/10.2307/3760972
  31. Baura G, Szaro TM, Bruns TD. Gastrosuillus laricinus is a recent derivative of Suillus grevillei: molecular evidence. Mycologia 1992;84:592-7. https://doi.org/10.2307/3760328
  32. Kretzer A, Bruns TD. Molecular revisitation of the genus Gastrosuillus. Mycologia 1997;89:586-9. https://doi.org/10.2307/3760995
  33. Manian S, Sreenivasaprasad S, Bending GD, Mills PR. Genetic diversity and interrelationships among common European Suillus species based on ribosomal DNA sequences. FEMS Microbiol Lett 2001;204:117-21. https://doi.org/10.1111/j.1574-6968.2001.tb10873.x
  34. Nilsson RH, Ryberg M, Abarenkov K, Sjokvist E, Kristiansson E. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol Lett 2009;296:97-101. https://doi.org/10.1111/j.1574-6968.2009.01618.x
  35. Begerow D, Nilsson H, Unterseher M, Maier W. Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 2010;87: 99-108. https://doi.org/10.1007/s00253-010-2585-4
  36. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W; Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 2012;109:6241-6. https://doi.org/10.1073/pnas.1117018109
  37. Moser M, Plant S, Kibby G. Keys to Agarics and Boleti (Polyporales, Boletales, Agaricales, Russulales). London: Roger Phillips; 1983.
  38. Rogers SO, Bendich AJ. Extraction of total cellular DNA from plants, algae and fungi. Plant molecular biology manual D1. Dordrecht: Kluwer Academic Publishers; 1994. p. 183-90.
  39. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Inns M, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 315-22.
  40. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731-9. https://doi.org/10.1093/molbev/msr121
  41. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772-80. https://doi.org/10.1093/molbev/mst010
  42. Kumar S, Nei M, Dudley J, Tamura K. MEGA: a biologistcentric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 2008;9:299-306. https://doi.org/10.1093/bib/bbn017
  43. Mueller GM, Bills GF, Foster MS. Biodiverstiy of fungi: inventory and monitoring methods. New York: Elsevier Academic Press; 2004.