〈연구논문(학술)〉

전기방사를 이용한 Poly(vinyl alcohol)/Pullulan/TiO2 나노부직포의 제조

양성백 \cdot 최우석 \cdot 현재민 \cdot 신재천 1 \cdot 최진현 \cdot 염정현 †

경북대학교 기능물질공학과, '포항테크노파크 바이오정보지원센터

Electrospinning Fabrication of Poly(vinyl alcohol)/Pullulan/TiO₂ Nanofibers

Seong Baek Yang, Woo Seok Choi, Jae Min Hyun, Jae Cheon Shin¹, Jin Hyun Choi and Jeong Hyun Yeum[†]

Department of Advanced Organic Materials Science and Engineering, Kyungpook National University, Daegu, Korea

¹Pohang Center for Evaluation of Biomaterials, Pohang, Korea

(Received: June 30, 2014 / Revised: August 1, 2014 / Accepted: September 16, 2014)

Abstract: Poly(vinyl alcohol)(PVA)/pullulan/titanium dioxide(TiO₂) composite nanofibers were produced at different TiO₂ concentrations(1 and 3 wt.%) using the electrospinning method. The parameters of electrospinning including polymer contents, voltage and tip-to-collector distance(TCD) were optimized for fabrication process. The study showed that the best condition to make PVA/pullulan nanofiber and effect of TiO₂ nanoparticles. The PVA/pullulan/TiO₂ nanofibers were characterized by scanning electron microscope(SEM), transmission electron microscope(TEM), Thermogravimetric analysis (TGA) and X-ray diffraction(XRD).

Keywords: electrospinning, PVA, pullulan, TiO2, nanofiber, nanocomposite

1. 서 론

나노복합재료는 한 가지 재료만으로는 얻을 수 없지만 유기재료 및 무기재료와의 간단한 혼합만으로도 다양한 특성을 나타낼 수 있다. 최근 무기입자를 함유한 고분자 매트릭스가 도입되면서 보다효율적이고 비교적 저렴하며 우수한 성능을 지닌고분자 복합재료를 만들 수 있게 되었다¹⁻⁵⁾.

전기방사는 전통적인 방사 방법에 비하여 비교적 간단한 공정으로 고분자 용액에 전압을 가하여 수십에서 수백나노미터 직경을 가진 부직포를 제조하는 기술로 쉽고 간편하게 나노크기의 부직포를 생산할 수 있다. 기계적 원리가 아닌 전기적 힘을 이용하는 것으로 농도, 전압, 팁과 콜렉터 사이의 거리(TCD)에 따라 부직포의 형태학적 특성이 변한다. 이렇게 제조된 나노부직포는 넓은 표면적을 가지고 있어, 기능을 부여했을 때 더욱 극대화되는

Poly(vinyl alcohol)(PVA)은 친수성을 띄는 반결정성 고분자로써 열적 특성이 우수하고, 인체친화성을 가지며 비독성이며 흡습성이 매우 뛰어나다. 또한 표면활성도와 용해도가 높고, 수산기를 함유하고 있어 다른 고분자와 blend 시 혼화성이 매우 우수하다. 다양한 특성을 가진 PVA의 응용범위는 매우 넓은데 필터, 포장지, 시멘트 보강재, drug delivery system 등에 사용되고 있다^{8,9)}.

효모와 같은 균류에 의해 만들어진 pullulan은 최근 생물공학 또는 생명공학 분야에서 인체친화성 고분자로 큰 관심을 받고 있다¹⁰⁾. Pullulan은 수용성이고 다른 다당류와 비교하여 상대적으로 점도가 낮고 비독성이며 생분해성을 가지고 있다. 이러한 다양한 특성을 가지고 있어 저칼로리 음식의 재료, 결화제, 코팅 및 포장재료, 약품 등에 사용되고 있다¹¹⁻¹⁴⁾.

이산화티타늄(TiO₂)은 빛을 에너지원으로 산화·환 원 반응을 통해 각종 세균 및 오염물질을 분해시켜 주는 물질이다. 무독성 물질로서 친환경적이며, 열

©2014 KSDF 1229-0033/2014-9/195-200

장점을 가지고 있다^{6,7)}.

[†]Corresponding author: Jeong Hyun Yeum (jhyeum@knu.ac.kr) Tel.: +82-53-950-5739 Fax.: +82-53-950-6744

안정성이 우수하다. 또한 인체에 무해하며, 산화력이 커서 항균성이 크고, 악취제거 및 살균력이 있으며 비용이 매우 저렴하다. 선행연구 결과에 의하면 순수 PVA 나노부직포에 pullulan 고분자가 추가될수록 열적성질이 향상이 되며, TiO₂ 나노입자가함입된 나노부직포의 경우 고분자의 다양한 특성에항균성 및 화학적 안정성이 부가되어 기존에 사용되던 분야에 대한 효율을 증가 시킬 수 있다¹⁴⁻¹⁹⁾.

본 연구진은 선행연구에서 PVA 나노부직포 제조시 소량의 pullulan이 첨가되어도 제조된 블렌드나노부직포의 열적성질이 향상되는 것을 보고한 바었다¹⁴⁾. 본 연구에서는 전기방사를 위한 용액 제조시 PVA에 소량의 pullulan 및 TiO₂ 나노입자를 첨가하여 TiO₂ 나노입자가 혼입된 PVA/pullulan(9/1) 나노부직포를 제조하고, TiO₂ 나노입자의 함량에 따른 PVA/pullulan/TiO₂ 나노부직포의 형태, 열적특성 및 구조적 특성에 관한 연구를 진행하였다.

2. 실 험

2.1 실험재료

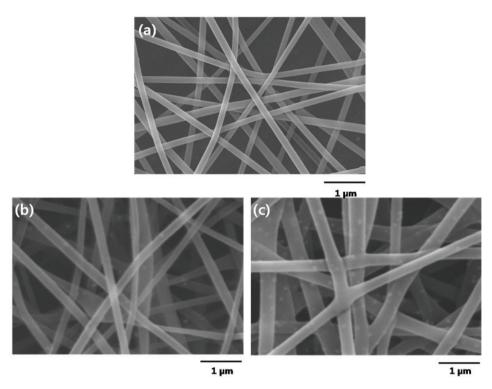
본 실험에서 사용된 PVA(DC Chemical Co., Korea)는 수평균 중합도 1700, 비누화도가 99.9%인 것을 사용하였다. 또한 pullulan(Hayashibara Biochemical Laboratories Inc., Okayama, Japan)은 식용 가능한 등급(PF-20 grade)의 제품을 사용하였으며, TiO₂(평균 직경: 15-25nm, Advanced Polymer, Inc. New jersey, USA)는 미세분말 형태의 제품을 사용하였다. 용액 제조 시 사용된 용매는 2번 정제된 2차 증류수를 사용하였다.

2.2 PVA/pullulan/TiO2 blend 용액 제조

PVA/pullulan(9/1) 용액은 각각 농도(7, 9, 11wt.%) 를 달리하여 제조되었는데, 2차 증류수를 용매로하여 60°C 이상의 온도에서 PVA 및 pullulan을 약 2시간 동안 교반시켜 용액을 완성하였다. PVA/pullulan/TiO₂ 용액은 PVA/pullulan 용액에 함량을 달리한 TiO₂(1, 3wt.%) 나노입자를 상온에서 교반기를 이용하여 서서히 교반하며 첨가하였다. 교반 후 TiO₂ 나노입자의 분산을 위해 초음파 분산기(Sonic & Materials. Inc.의 VC-750 ultrasonic processor)를 이용하여 3시간 동안 분산시킨 후 TiO₂ 나노입자가고분자 용액에 안정적으로 분산된 것을 확인하였다.

2.3 전기방사

전기방사 장치의 고전압 발생장치는 CPS-60K02VIT (CHUNGPA EMT Co., Seoul, Korea)를 사용하였으며, 이 장치는 사용된 주사기의 탑에 15kV의 전압을 공급하게 된다. 주사기에 담겨있는 용액은 syringe pump에 의해 일정한 속도(0.5 ml/min)로 주사기 바늘의 끝으로 이동하게 된다. 주사기 바늘끝에 맺힌 용액은 전압에 의해 jet을 형성하게 되며이 jet은 원통형의 알루미늄 호일에 감겨있는 콜렉터에 누적된다. TCD는 15cm로 고정하여 실험을 진행하였다.


2.4 특성분석

전기방사를 이용하여 제조된 나노부직포의 외부형태 변화 및 나노부직포 내부에 함입된 TiO₂ 나노입자를 확인하기 위해 Field Emission Scanning Electron Microscope(FE-SEM, Hitachi, S-4800)와 Transmission Electron Microscopy(TEM, Hitachi, H-7600)를 이용하였다. 나노부직포의 열적특성을 분석하기 위해 Thermogravimetric analysis(TGA, TA instrument, Q-50)를 이용하였고, 구조분석을 위해 X-ray diffractometer (Rigaku Ⅲ, Rigaku Co., Japan)를 사용하였으며, CuK α radiation에서 40kV, 30mA에서 scan range는 2θ 3-50°에서, scan speed는 2°/min로 설정하여 분석하였다. 또한 나노부직포의 직경은 FE-SEM으로 촬영된 나노부직포의 이미지를 Adobe Photoshop 5.0 프로그램을 이용하여 측정하였다.

3. 결과 및 고찰

3.1 PVA/pullulan/TiO₂ 나노부직포의 표면 특성 분석

본 연구진은 선행연구에서 PVA 나노부직포 제조시 소량의 pullulan이 첨가되어도 제조된 블렌드 나노부직포의 열적성질이 향상되는 것을 보고한 바 있다. 또한, PVA/pullulan 나노부직포 제조시 최적의 전압 및 TCD 조건을 제시한 바 있다. 가장 이상적인 나노부직포 형태를 제조하기 위한 PVA/pullulan 용액의 전기방사 조건은 PVA/pullulan 블렌드 비가 9/1(w/w) 일 때 농도, 전압 및 TCD 조건은 각각 9wt.%, 15kV 및 15cm였다¹⁴⁾. 이렇게 확립된 조건을 이용하여 TiO₂(1, 3wt.%) 나노입자의 함량에 따른 나노부직포의 형태를 알아보기 위해 FE-SEM과

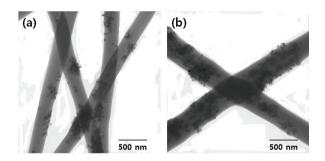


Figure 1. FE-SEM images of PVA/pullulan/TiO₂ nanofibers mats prepared by using various TiO₂ contents of (a) 0 wt.%, (b) 1 wt.% and (c) 3 wt.%(PVA/pullulan solution concentration: 9 wt.%, Voltage: 15 kV and tip-to-collector distance: 15cm).

TEM이 사용되었다.

Figure 1은 TiO₂ 나노입자의 함량에 따른 나노부 직포의 외부형태 변화를 FE-SEM을 이용하여 측정한 결과이다. TiO₂ 나노입자의 함량이 1, 3wt.%로 증가할 때마다 섬유의 직경이 증가하는 것을 알 수있다. TiO₂ 나노입자의 함량이 1wt.%의 경우 나노입자가 함유되지 않은 나노부직포에 비해 나노섬유의 직경이 약 90nm 증가하였고, 함량이 3wt.%로 증가함에 따라 직경이 약 170nm 증가하는 것을 알수 있다.

Figure 2는 TiO₂ 나노입자의 함량에 따른 나노부 직포의 내부형태 변화를 알아보기 위해 TEM을 이용하여 이미지화 한 것이다. 나노부직포에 검게 분포된 것이 TiO₂ 나노입자이며 함량이 증가함에 따라 나노부직포의 직경과 분포된 TiO₂ 나노입자가증가함을 알 수 있다. 또한 나노복합재료로써의 기능을 발현하기 위해서는 함입된 TiO₂ 나노입자가나노부직포에 고르게 분포되어 있어야 하는데, 나노입자들이 섬유표면 및 내부에 약간의 클러스터를 형성하여 분산된 것을 알 수 있다. 본 연구에서사용된 천연고분자인 pullulan과 TiO₂ 나노입자가

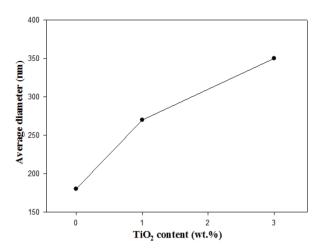
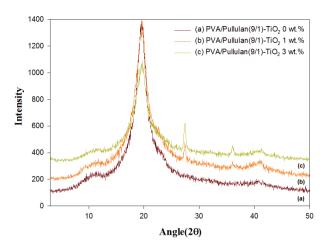


Figure 2. TEM images of PVA/pullulan/TiO₂ nanofibers mats prepared by using various TiO₂ contents of (a) 1 wt.%, (b) 3 wt.%(PVA/pullulan solution concentration: 9 wt.%, Voltage: 15 kV and tip-to-collector distance: 15cm).

PVA 나노섬유 내에서 어느정도의 클러스터를 형성한 것으로 보인다. 향후, 정확한 메카니즘을 확인하기 위해 계면활성제의 사용을 검토할 필요가 있을 것으로 보인다.

3.2 TiO₂ 함량에 따른 나노부직포의 직경변화

PVA/pullulan 농도 9wt.%일 때 TiO₂(0, 1, 3wt.%) 나노입자의 함량을 달리하여 나노부직포를 제조한 후 직경을 측정하였다. Linh 등의 연구에서는 사용

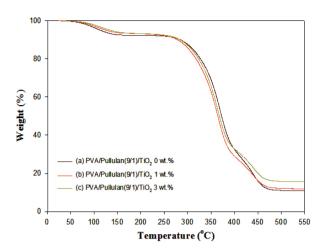

Figure 3. Average diameter of PVA/pullulan/TiO₂ nanofibers mats syntheses by using various TiO₂ contents (PVA/pullulan solution concentration: 9wt.%, Voltage: 15kV and tip-to-collector distance: 15cm).

되었던 PVA의 분자량 및 방사조건을 달리하였지만, 제조된 PVA/TiO₂ 나노부직포의 직경을 측정한결과 TiO₂ 나노입자의 함량이 높을수록 직경이 감소하였다²⁰⁾. 하지만 본 연구에서 제조한 나노부직포 직경의 경우 pullulan의 첨가로 인해 다른 경향이 나타났으며 그 결과를 다음과 같이 나타내었다.

Figure 3은 TiO₂ 나노입자의 함량에 따른 나노부 직포의 직경 변화를 나타낸 것으로, TiO₂ 나노입자의 함량이 0wt.% 일 때 평균 직경은 약 180nm 정도로 매우 가늘다. 하지만 TiO₂ 나노입자의 함량이 증가함에 따라 나노부직포의 평균 직경은 약80-90nm 정도로 크게 증가하게 되는데 나노입자의함량이 3wt.%일 때 나노부직포의 직경은 약350nm로 측정되어 입자를 함유하지 않은 나노부직포의직경보다약 2배정도 증가하였다. 본 연구에서 사용된 천연고분자인 pullulan과 TiO₂ 나노입자를 PVA 나노섬유 제조시 첨가하였을 경우, pullulan에의해 TiO₂ 나노입자가 다소의 클러스터를 형성함으로서 나노섬유의 직경이 증가하는 것으로 예측된다.

3.3 PVA/pullulan/TiO₂ 나노부직포의 결정 구 조 분석

Figure 4는 TiO_2 의 함량이 0, 1, $3wt.\%로 증가함에 따라 전기방사 된 <math>PVA/pullulan/TiO_2$ 나노부직포의 XRD 패턴을 나타낸 것이다. Islam 등의 연구에서 제조된 PVA/pullulan 나노부직포의 XRD 패턴을 보면 $19.4^{\circ}(2\theta)$ 부근에서 나노부직포 고유피크를


Figure 4. XRD patterns of PVA/pullulan/TiO₂ nanofibers with different TiO₂ contents of (a) 0wt.%, (b) 1wt.%, (c) 3wt.%(PVA/pullulan solution concentration: 9wt.%, Voltage: 15kV and tip-to-collector distance: 15cm).

나타내고 있다¹⁴⁾. 또한 Zhang 등의 연구에서 나타난 TiO₂ 나노입자의 XRD 패턴을 보면 25.3°, 38.6°부근에서 나노입자 고유의 피크를 나타내고 있다²¹⁾. 본 연구에서 제조된 나노부직포의 XRD 패턴을 보면 19.5° 부근에서 볼 수 있는 넓은 피크는 PVA/pullulan 고유 피크를 나타내고, 26.4°(101), 37.1°(112)부근에서 볼 수 있는 작은 피크는 TiO₂ 나노입자의고유 피크를 나타내고 있다. 또한 TiO₂ 나노입자의함량이 증가함에 따라 피크가 증가하는 것을 확인할 수 있다²²⁾. 이는 PVA/pullulan 매트릭스에 TiO₂ 나노입자가 잘 혼입된 나노복합섬유가 형성되어 있음을 보여주는 것이다.

3.4 PVA/pullulan/TiO₂ 나노부직포의 열적 특성 분석

Figure 5는 TiO₂ 함량(0, 1, 3wt.%)에 따른 PVA/pullulan/TiO₂ 나노부직포의 열적 안정성을 분석한 것으로 질소 분위기 하에서 TGA를 이용하여 분석되었다. TiO₂ 나노입자의 함량이 0, 1, 3wt.%로 변화함에 따라 다른 열분해 온도가 나타나는 것을 알수 있다.

150°C 미만의 온도에서 가장 아래에 있는 (a)는 TiO₂ 나노입자를 첨가하지 않은 순수 PVA/pullulan의 질량 변화를 나타낸 것으로, TiO₂ 나노입자의 함량이 증가할수록 초기 열적안정성이 향상되는 것을 알 수 있다. 반면, 약 250°C를 기점으로 TiO₂ 나노입자의 함량이 증가할수록 열분해가 촉진되어 열적안정성이 감소되는 것을 볼 수 있다.

Figure 5. TGA data of PVA/pullulan/TiO₂ nanofibers with different TiO₂ contents of (a) 0wt.%, (b) 1wt.%, (c) 3wt.%(PVA/pullulan solution concentration: 9wt.%, Voltage: 15kV and tip-to-collector distance: 15cm).

따라서, 본 연구에서 제조된 PVA/pullulan/TiO₂ 나노부직포의 경우, 약 250°C 이상에서는 TiO₂ 나노입자의 함량이 증가할수록 분해 속도가 증가되는 것을 알 수 있다. 자세한 메카니즘 분석을 위해서는 향후 TiO₂ 나노입자의 함량별로 제조된 PVA/pullulan/TiO₂ 나노부직포를 이용하여 온도 구간별중량 감소율을 측정할 필요가 있을 것으로 보인다.

4. 결 론

본 연구에서는 pullulan을 소량 첨가하여 PVA/pullulan/TiO₂ 나노부직포 제조시 TiO₂ 나노입자의 함량에 따른 나노부직포를 제조하여 FE-SEM, TEM, XRD, TGA를 이용하여 PVA/pullulan/TiO₂ 나노부직포가 갖는 특성들에 대한 분석을 실시하였고 결과는 다음과 같다.

1. 섬유의 직경이 균일한 PVA/pullulan 나노부직포 최적조건에서 TiO2 나노입자의 함량을 달리하여 나노부직포의 표면형태를 FE-SEM 및 TEM을 이용하여 비교하였다. TiO2 나노입자의 함량이 lwt.% 및 3wt.%로 증가함에 따라 나노입자가 함유되지 않은 나노부직포에 비해 나노섬유의 직경이 점증적으로 증가하는 것을 알 수 있다. 또한 함입된 TiO2 나노입자들이 어느 정도의 클러스터를 형성하여 분산된 것을 확인할 수 있었다. TiO2 나노입자의 함량을 달리한 나노부직포의 직경을 측정하였는데 각각 0wt.%, lwt.% 및

- 3wt.% 일 때 평균직경은 각각 약 180nm, 270nm 및 350nm로 측정되었다.
- 2. TiO₂ 함량에 따른 PVA/pullulan/TiO₂ 나노부직포의 열적특성을 확인하기 위해 TGA를 이용하였고, 안정적인 복합체 형태를 형성하였는지 확인하기 위해 XRD를 이용하였다. TGA 그래프를보면 TiO₂ 나노입자의 함량이 증가함에 따라PVA/pullulan/TiO₂ 나노부직포의 질량이 감소하고 온도가 서서히 높아지다가, 약 250°C를 기점으로 TiO₂ 나노입자의 함량이 증가할수록 열분해가 촉진되어 열적안정성이 감소되는 것을 볼수 있다. 또한 XRD 그래프를 통해 TiO₂ 나노입자가 PVA/pullulan 고분자 매트릭스에 고르게 삽입되어 있음을 확인할 수 있었다.

감사의 글

본 연구는 2013년도 농림축산식품부 기술사업화 지원사업(113042-3) 및 농촌진흥청 Agenda 사업 (PJ009204022014)의 지원으로 수행되었습니다.

References

- W. Wu, T. He, J. Chen, X. Zhang, and Y. Chen, Study on in situ Preparation of Nano Calcium Carbonate/PMMA Composite Particles, *Mater. Lett*, 60(19), 2410(2006).
- M. Okamoto, S. Morita, H. Taguchi, Y. H. Kim, T. Kotaka, and H. Tateyama, Synthesis and Structure of Smectic Clay/poly(methylmethaacrylate) and Clay/polystyrene Nanocomposites via in situ Intercalative Polymerization, *Polymer*, 41(10), 3887 (2000).
- J. Ramos, A. Millan, and F. Palacio, Production of Magnetic Nanoparticles in a Polyvinyl Pyridine Matrix, *Polymer*, 41(24), 8461(2000).
- Z. K. Zhu, J. Yin, F. Cao, X. Y. Shang, and Q. H. Lu, Photosensative Polyimide/silica Hybrids, Adv. Mater, 12(14), 1055(2000).
- M. Mukherjee, A. Datta, and D. Chakravorty, Electrical Resistivity of Nanocrystalline PbS Grown in a Polymer Matrix, *Appl. Phy. Lett*, 64(9), 1159(1994).
- 6. K. Lee and S. Lee, Fabrication and Evaluation of Electrospun Nanocomposite Fibers for the Development

- of UV-protective Textile Materials, *J. Korean Soc. Clothing and Textiles*, **34**(11), 1767(2010).
- S. C. Lee, H. Y. Kim, D. R. Lee, D. Bin, and S. J. Park, Morphological Characteristics of Electrospun Poly(vinyl alcohol) Nonwoven, *J. Korean Fiber Society*, 39(3), 316(2002).
- 8. I. K. Kim and J. H. Yeum, Electrospinning Fabrication and Characterization of Poly(vinyl alcohol)/Waterborne Polyurethane/Montmorillonite Nanocomposite Nanofibers, *Polymer(Korea)*, **35**(6), 553(2011).
- J. H. Park, M. R. Karim, I. K. Kim, I. W. Cheong, J. W. Kim, D. G. Bae, J. W. Cho, and J. H. Yeum, Electrospinning Fabrication and Characterization of Poly(vinyl alcohol)/Montmorillonite/Silver Hybrid Nanofibers for Antibacterial Applications, Colloid. Polym. Sci., 288(1), 115(2010).
- H. J. Jin, J. Chen, V. Karageorgiou, V. G. H. Altman, and D. L. Kaplan, Human Bone Marrow Stromal Cell Responses on Electrospun Silk Fibron Mats, *Biomaterials*, 25(6), 1039(2004).
- C. J. Israilides, A. Smith, J. E. Harthill, C. Barnett, G. Bambalov, and B. Scanlon, Pullulan Content of the Ethanol Recipitate from Fermented Agro-industrial Wastes, *Appl. Microbiol. Biot.*, 49(5), 613(1998).
- T. D. Leathers, Biotechnological Production and Applications of Pullulan, *Appl. Microbiol. Biot.*, 62(5), 468(2003).
- R. Schuster, E. Wenzig, and A. Mersmann, Production of the Fungal Exopolysaccharide Pullulan by Batch-wise and Continuous Fermentation, *Appl. Microbiol. Biot.*, 39(2), 155(1993).
- 14. M. S. Islam, J. H. Yeum, and A. K. Das, Effect of Pullulan/poly(vinyl alcohol) Blend System on the Montmorillonite Structure with Property Characterization of Electrospun Pullulan/poly(vinyl

- alcohol)/montmorillonite Nanofibers, *J. Colloid Interface Sci.*, **368**(1), 273(2012).
- N. T. B. Linh, K. H. Lee, and B. T. Lee, Fabrication of Photocatalytic PVA-TiO₂ Nanofibrous Hybrid Membrane using the Electrospinning Method, *J. Mater. Sci.*, 46(17), 5615(2011).
- B. Y. Kadem, Study of Some Mechanical Properties of PVA/TiO₂ Composite by Ultrasonic Technique, *International J. of Science and Technology*, 1(5), 183(2011).
- K. R. Bae, C. H. Ko, Y. Park, Y. Kim, J. S. Bae, J. H. Yeum, I. S. Kim, and W. J. Lee, Structure Control of Nanocrystalline TiO₂ for the Dye-sensitized Solar Cell Application, *Curr. Appl. Phys.*, 10(3), 406(2010).
- R. Venckatesh, K. Balachandaran, and R. Sivaraj, Synthesis and Characterization of Nano TiO₂-SiO₂: PVA Composite - a Novel Route, *International Nano Letters*, 2(15), 1(2012).
- B. C. Ji, S. S. Bae, M. M. Rabbani, and J. H. Yeum, Photocatalytic Activity of Electrospun PAN/TiO₂ Nanofibers in Dye Photodecomposition, *Textile Coloration and Finishing(J. of Korea Soc. Dyers and Finishers)*, 25(2), 94(2013).
- N. T. B. Linh, K. H. Lee, and B. T. Lee, Fabrication of Photocatalytic PVA-TiO₂ Nano-Fibrous Hybrid Membrane using the Electrospinning Method, *J. Mater. Sci.*, 46(17), 5615(2011).
- J. Y. Zhang, I. W. Boyd, B. J. O'Sullivan, P. K. Hurley, P. V. Kelly, and J. P. Senateur, Nanocrystalline TiO₂ Films Studied by Optical, XRD and FTIR Spectroscopy, *J. Non-Crystaline Solids*, 303(1), 134(2002).
- 22. Y. H. Kim, K. B. Do, J. Y. Choi, M. M. Rabbani, S. I. Han, and J. H. Yeum, Electrospinning Fabrication of Poly(vinyl alcohol)/TiO₂ Nanofibers, *Textile Coloration and Finishing(J. of Korea Soc. Dyers and Finishers)*, **25**(2), 118(2013).