KYUNGPOOK Math. J. 54(2014), 501-509 http://dx.doi.org/10.5666/KMJ.2014.54.3.501

The Order of Normal Form Generalized Hypersubstitutions of Type $\tau = (2)$

SIVAREE SUDSANIT

Department of Mathematics, Chiang Mai University, Chiang Mai, 50200, Thailand e-mail: sivaree_sudsanit@hotmail.com

SORASAK LEERATANAVALEE*

Materials Science Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand

e-mail: sorasak.l@cmu.ac.th

ABSTRACT. In 2000, K. Denecke and K. Mahdavi showed that there are many idempotent elements in $Hyp_{N_{\varphi}}(V)$ the set of normal form hypersubstitutions of type $\tau = (2)$ which are not idempotent elements in Hyp(2) the set of all hypersubstitutions of type $\tau =$ (2). They considered in which varieties, idempotent elements of Hyp(2) are idempotent elements of $Hyp_{N_{\varphi}}(V)$. In this paper, we study the similar problems on the set of all generalized hypersubstitutions of type $\tau = (2)$ and the set of all normal form generalized hypersubstitutions of type $\tau = (2)$ and determine the order of normal form generalized hypersubstitutions of type $\tau = (2)$.

1. Introduction

The order of generalized hypersubstitutions of type $\tau = (2)$ was studied by W. Puninagool and S. Leeratanavalee [6]. In this paper, we used the order of generalized hypersubstitutions of type $\tau = (2)$ as a tool to characterize the order of normal form generalized hypersubstitutions of type $\tau = (2)$.

A generalized hypersubstitution of type $\tau = (n_i)_{i \in I}$ is a mapping σ which maps each n_i -ary operation symbol to the set $W_{\tau}(X)$ of all terms of type τ built up by operation symbols from $\{f_i | i \in I\}$ where f_i is n_i -ary and variables from a countably infinite alphabet $X := \{x_1, x_2, x_3, ...\}$ which dose not necessarily preserve the arity. We denote the set of all generalized hypersubstitutions of type τ by $Hyp_G(\tau)$. To

^{*} Corresponding Author.

Received September 28, 2012; accepted April 15, 2013.

²⁰¹⁰ Mathematics Subject Classification: 08A40, 20M07.

Key words and phrases: Order, normal form generalized hypersubstitution, idempotent element.

⁵⁰¹

define a binary operation on $Hyp_G(\tau)$, we define at first the concept of generalized superposition of terms $S^m: W_\tau(X)^{m+1} \longrightarrow W_\tau(X)$ by the following steps:

- (i) If $t = x_j, 1 \le j \le m$, then $S^m(x_j, t_1, ..., t_m) := t_j$.
- (ii) If $t = x_j, m < j \in \mathbb{N}$, then $S^m(x_j, t_1, ..., t_m) := x_j$.
- (iii) If $t = f_i(s_1, ..., s_{n_i})$, then $S^m(t, t_1, ..., t_m) := f_i(S^m(s_1, t_1, ..., t_m), ..., S^m(s_{n_i}, t_1, ..., t_m)).$

We extend a generalized hypersubstitution σ to a mapping $\hat{\sigma} : W_{\tau}(X) \longrightarrow W_{\tau}(X)$ inductively defined as follows:

- (i) $\hat{\sigma}[x] := x \in X$,
- (ii) $\hat{\sigma}[f_i(t_1, ..., t_{n_i})] := S^{n_i}(\sigma(f_i), \hat{\sigma}[t_1], ..., \hat{\sigma}[t_{n_i}])$, for any n_i -ary operation symbol f_i , supposed that $\hat{\sigma}[t_j], 1 \le j \le n_i$ are already defined.

Then we define a binary operation \circ_G on $Hyp_G(\tau)$ by $\sigma_1 \circ_G \sigma_2 := \hat{\sigma}_1 \circ \sigma_2$ where \circ denotes the usual composition of mappings and $\sigma_1, \sigma_2 \in Hyp_G(\tau)$. Let σ_{id} be the hypersubstitution which maps each n_i -ary operation symbol f_i to the term $f_i(x_1, ..., x_{n_i})$.

In [3], S. Leeratanavalee and K. Denecke proved that: For arbitrary terms $t, t_1, ..., t_n \in W_{\tau}(X)$ and for arbitrary generalized hypersubstitutions $\sigma, \sigma_1, \sigma_2$ we have

- (i) $S^{n}(\sigma[t], \sigma[t_{1}], ..., \sigma[t_{n}]) = \hat{\sigma}[S^{n}(t, t_{1}, ..., t_{n})],$
- (ii) $(\hat{\sigma}_1 \circ \sigma_2) = \hat{\sigma}_1 \circ \hat{\sigma}_2$.

It turns out that $\underline{Hyp_G(\tau)} = (Hyp_G(\tau); \circ_G, \sigma_{id})$ is a monoid where σ_{id} is the identity element and the set of all hypersubstitutions of type τ forms a submonoid of $Hyp_G(\tau)$.

For more details on generalized hypersubstitutions see [3]. In this paper, we consider the type $\tau = (2)$ with the binary operation symbol, say f. Let W_{x_1} denote the set of all words using only the letter x_1 , and dually for W_{x_2} . For $s \in W_{(2)}(X)$, we denote :

 $\sigma_s :=$ the generalized hypersubstitution which maps the binary operation f to the term s,

$$\begin{split} &leftmost(s) \coloneqq \text{the first variable (from the left) that occurs in } s, \\ &rightmost(s) \coloneqq \text{the last variable (from the right) that occurs in } s, \\ &W^G_{(2)}(\{x_1\}) \coloneqq \{s \in W_{(2)}(X) | x_1 \in var(s), x_2 \notin var(s)\}, \\ &W^G_{(2)}(\{x_2\}) \coloneqq \{s \in W_{(2)}(X) | x_2 \in var(s), x_1 \notin var(s)\}, \\ &W^G \coloneqq \{t \in W_{(2)}(X) | t \notin X, x_1, x_2 \in var(t)\}, \\ &G \coloneqq \{\sigma_s \in Hyp_G(2) | s \in W_{(2)}(X) \setminus X, x_1, x_2 \notin var(s)\}, \end{split}$$

The Order of Normal Form Generalized Hypersubstitutions of Type $\tau = (2)$ 503

$$\begin{split} P_G(2) &:= \{\sigma_{x_i} \in Hyp_G(2) | i \in \mathbb{N}, x_i \in X\}, \\ E_{x_1}^G &:= \{\sigma_{f(x_1,s)} \in Hyp_G(2) | s \in W_{(2)}(X), x_2 \notin var(s)\}, \\ E_{x_2}^G &:= \{\sigma_{f(s,x_2)} \in Hyp_G(2) | s \in W_{(2)}(X), x_1 \notin var(s)\}, \\ T_1 &:= \{\sigma_s \in Hyp_G(2) | s \in W_{(2)}^G(\{x_1\}) \text{ and } leftmost(s) = x_m\} \text{ where } m > 2, \\ T_2 &:= \{\sigma_s \in Hyp_G(2) | s \in W_{(2)}^G(\{x_2\}) \text{ and } rightmost(s) = x_m\} \text{ where } m > 2. \end{split}$$

In [6], W. Puninagool and S. Leeratanavalee proved that the following statements hold.

- (i) Let σ_t be a generalized hypersubstitution of type $\tau = (2)$. Then σ_t is idempotent if and only if $\hat{\sigma}[t] = t$.
- (ii) $P_G(2) \cup E_{x_1}^G \cup E_{x_2}^G \cup G \cup \{\sigma_{id}\}$ is the set of all idempotent elements in $Hyp_G(2)$.
- (iii) $T_1 \cup T_2 \cup \{\sigma_{f(x_2,x_1)}\}$ is the set of all elements has order 2 in $Hyp_G(2)$.
- (iv) If $\sigma \in Hyp_G(2) \setminus (P_G(2) \cup E_{x_1}^G \cup E_{x_2}^G \cup G \cup \{\sigma_{id}\} \cup T_1 \cup T_2 \cup \{\sigma_{f(x_2,x_1)}\})$, then $\sigma^n \neq \sigma^{n+1}$ for all $n \in \mathbb{N}$ with $n \ge 1$ (i.e. σ has infinite order).
- (v) If $\sigma \in Hyp_G(2) \setminus (P_G(2) \cup E_{x_1}^G \cup E_{x_2}^G \cup G \cup \{\sigma_{id}\} \cup T_1 \cup T_2 \cup \{\sigma_{f(x_2,x_1)}\})$, then the length of the word $(\sigma \circ_h \sigma)(f)$ is greater than the length of $\sigma(t)$.

2. Normal Form Generalized Hypersubstitutions

The concept of normal form hypersubstitutions was introduced by J. Płonka in 1994 [5]. In [4], S. Leeratanavalee and K. Denecke generalized the concept of normal form hypersubstitutions to normal form generalized hypersubstitutions. We recall first the definition of V-generalized equivalent.

Definition 2.1. Let V be a variety of type τ . Two generalized hypersubstitutions σ_1 and σ_2 of type τ are called V-generalized equivalent if $\sigma_1(f_i) \approx \sigma_2(f_i)$ are identities in V for all $i \in I$. In this case we write $\sigma_1 \sim_{VG} \sigma_2$.

Clearly, the relation \sim_{VG} is an equivalence relation on $Hyp_G(\tau)$ and has the following properties:

Proposition 2.2.([4]) Let V be a variety of type τ and let $\sigma_1, \sigma_2 \in Hyp_G(\tau)$. Then the following are equivalent.

(i) $\sigma_1 \sim_{VG} \sigma_2$.

(ii) For all $t \in W_{\tau}(X)$ the equation $\hat{\sigma}_1[t] \approx \hat{\sigma}_2[t]$ is an identity in V.

In general, the relation \sim_{VG} is not a congruence relation on $Hyp_G(\tau)$. Let V be a variety of type τ and IdV be the set of identities satisfied in the variety V. If $s \approx t$ is an identity and for any $\sigma \in Hyp_G(\tau), \hat{\sigma}[s] \approx \hat{\sigma}[t] \in IdV$ then $s \approx t$ is called a *strong hyperidentity*. A variety V is called *strongly solid* if every identity in V is satisfied as a strong hyperidentity. For a strongly solid variety V the relation \sim_{VG} is a congruence relation on $Hyp_G(\tau)$ and the factor monoid $Hyp_G(\tau)/_{\sim_{VG}}$ exists.

In the arbitrary case we form also $Hyp_G(2)/_{\sim_{VG}}$ and consider a choice function

S. Sudsanit and S. Leeratanavalee

$$\varphi: Hyp_G(2)/_{\sim_{VG}} \to Hyp_G(2), \text{ with } \varphi([\sigma_{id}]_{\sim_{VG}}) = \sigma_{id}$$

which selects from each equivalence class exactly one element. Then we obtain the set $Hyp_{GN_{\varphi}}(V) := \varphi(Hyp_G(2)/_{\sim_{VG}})$ of all normal form generalized hypersubstitutions with respect to \sim_{VG} and φ .

On the set $Hyp_{GN_{\alpha}}(V)$ we define a binary operation

 $\circ_{GN} : Hyp_{GN_{\varphi}}(V) \times Hyp_{GN_{\varphi}}(V) \to Hyp_{GN_{\varphi}}(V)$

by $\sigma_1 \circ_{GN} \sigma_2 := \varphi(\sigma_1 \circ_G \sigma_2)$. This mapping is well-defined, but in general not associative.

For example, we consider the variety $V = Mod\{(xy)z \approx x(yz), xyuv \approx xuyv, x^3 \approx x\}$. Let f be our binary operation symbol and x_1x_2 abbreviates $f(x_1, x_2)$. So we can construct the set $W_{(2)}(X)/IdV$. These are some elements in $W_{(2)}(X)/IdV$: $[x_1]_{IdV}, [x_2]_{IdV}, [x_m]_{IdV}, [x_1x_m]_{IdV}, [x_mx_1]_{IdV}, [x_2x_m]_{IdV}, [x_mx_2]_{IdV}, [x_1x_1]_{IdV}, [x_2x_2]_{IdV}, [x_1x_2]_{IdV}, [x_mx_k]_{IdV}, [x_mx_kx_n]_{IdV}, [x_mx_1x_n]_{IdV}, [x_mx_2x_n]_{IdV}, [x_mx_nx_1]_{IdV}, [x_mx_1x_1]_{IdV}, [x_mx_2x_1]_{IdV}, [x_mx_2x_1]_{IdV}, [x_mx_mx_2]_{IdV}, [x_mx_1x_2]_{IdV}, [x_mx_1x_2]_{IdV}, [x_mx_2x_1]_{IdV}, [x_mx_mx_2]_{IdV}, [x_mx_1x_2]_{IdV}, [x_mx_1x_2]_{IdV}, [x_mx_2x_1]_{IdV}, [x_mx_2x_1]_{IdV}, [x_mx_mx_2]_{IdV}, [x_mx_1x_2]_{IdV}, [x_mx_1$

So we get some corresponding elements in $Hyp_{GN_{\varphi}}(V): \sigma_{x_1}, \sigma_{x_2}, \sigma_{x_m}, \sigma_{x_1x_m}, \sigma_{x_mx_1}, \sigma_{x_2x_m}, \sigma_{x_mx_2}, \sigma_{x_1x_1}, \sigma_{x_2x_2}, \sigma_{x_1x_2}, \sigma_{x_2x_1}, \sigma_{x_mx_k}, \sigma_{x_mx_kx_n}, \sigma_{x_mx_1x_n}, \sigma_{x_mx_2x_n}, \sigma_{x_mx_nx_1}, \sigma_{x_mx_2x_1}, \sigma_{x_mx_mx_2}, \sigma_{x_mx_1x_2}, \sigma_{x_mx_2x_2}, \sigma_{x_1x_nx_m}, \sigma_{x_1x_1x_m}, \sigma_{x_1x_2x_m}, \sigma_{x_1x_mx_1}, \sigma_{x_1x_2x_1}, \sigma_{x_1x_mx_2}, \sigma_{x_1x_1x_2}, \sigma_{x_2x_2}, \sigma_{x_2x_mx_n}, where <math>m, k, n > 2$. Since $\sigma_{x_mx_1}, \sigma_{x_1x_2x_2}, \sigma_{x_1x_1} \in Hyp_{GN_{\varphi}(V)}$ we consider

 $(\sigma_{x_m x_1} \circ_{GN} \sigma_{x_1 x_2 x_2}) \circ_{GN} \sigma_{x_1 x_1} = \sigma_{x_m x_1} \circ_{GN} \sigma_{x_1 x_1} = \sigma_{x_m x_1},$

 $\sigma_{x_m x_1} \circ_{GN} (\sigma_{x_1 x_2 x_2} \circ_{GN} \sigma_{x_1 x_1}) = \sigma_{x_m x_1} \circ_{GN} \sigma_{x_1} = \sigma_{x_1}.$

So $(Hyp_{GN_{\varphi}}(V); \circ_{GN}, \sigma_{id})$ is not a monoid.

We call this structure a groupoid of normal form generalized hypersubstitutions. Next, we consider, how to characterize the idempotent elements of $Hyp_{GN_{\varphi}}(V)$ where V is a variety of semigroups.

Proposition 2.3. Let V be a variety of semigroups and let

$$\varphi: Hyp_G(2)/_{\sim VG} \to Hyp_G(2).$$

be a choice function. Then

- (i) $\sigma \in Hyp_{GN_{\omega}}(V)$ is an idempotent element iff $\sigma \circ_G \sigma \sim_{VG} \sigma$.
- $\begin{array}{ll} \text{(ii)} & \sigma_{x_2x_1} \circ_{GN} \sigma_{x_2x_1} = \sigma_{x_1x_2} \text{ if } \sigma_{x_2x_1} \in Hyp_{GN_{\varphi}}(V), \\ & \sigma_{x_mx_1} \circ_{GN} \sigma_{x_mx_1} = \sigma_{x_mx_m} \text{ if } \sigma_{x_mx_1} \in Hyp_{GN_{\varphi}}(V) \text{ where } m > 2, \\ & \sigma_{x_2x_m} \circ_{GN} \sigma_{x_2x_m} = \sigma_{x_mx_m} \text{ if } \sigma_{x_2x_m} \in Hyp_{GN_{\varphi}}(V) \text{ where } m > 2. \end{array}$

505

Proof. (i) If σ is an idempotent of $Hyp_{GN_{\varphi}}(V)$, then $\sigma \circ_{GN} \sigma = \sigma \sim_{VG} (\sigma \circ_G \sigma)$. Conversely, we assume that $\sigma \sim_{VG} (\sigma \circ_G \sigma)$. Because of $\sigma \in Hyp_{GN_{\varphi}}(V)$, so $\sigma \circ_{GN} \sigma = \sigma$.

(ii) Since $(\sigma_{x_2x_1} \circ_{GN} \sigma_{x_2x_1}) \sim_{VG} (\sigma_{x_2x_1} \circ_G \sigma_{x_2x_1}) = \sigma_{x_1x_2} \in Hyp_{GN_{\varphi}}(V)$. Thus $\sigma_{x_2x_1} \circ_{GN} \sigma_{x_2x_1} = \sigma_{x_1x_2}, (\sigma_{x_mx_1} \circ_{GN} \sigma_{x_mx_1}) \sim_{VG} (\sigma_{x_mx_1} \circ_G \sigma_{x_mx_1}) = \sigma_{x_mx_m} \in Hyp_{GN_{\varphi}}(V)$. Thus $\sigma_{x_mx_1} \circ_{GN} \sigma_{x_mx_1} = \sigma_{x_mx_m}$ and $(\sigma_{x_2x_m} \circ_{GN} \sigma_{x_2x_m}) \sim_{VG} (\sigma_{x_2x_m} \circ_G \sigma_{x_2x_m}) = \sigma_{x_mx_m} \in Hyp_{GN_{\varphi}}(V)$. Thus $\sigma_{x_2x_m} \circ_{GN} \sigma_{x_2x_m} = \sigma_{x_mx_m}$. \Box

3. Idempotents in $Hyp_{GN_{\varphi}(V)}$

In general, if σ is an idempotent of $Hyp_G(2)$ and $\sigma \in Hyp_{GN_{\varphi}}(V)$, then it is also an idempotent in $Hyp_{GN_{\varphi}}(V)$ for any variety V of semigroups and any choice function φ . But if σ is an idempotent in $Hyp_{GN_{\varphi}}(V)$, then it is not necessarily be idempotent in $Hyp_G(2)$. As an example, let $V = Mod\{(xy)z \approx x(yz), xyuv \approx xuyv, x^3 \approx x\}$. We consider

 $\sigma_{x_m x_1 x_2} \circ_{GN} \sigma_{x_m x_1 x_2} = \sigma_{x_m x_1 x_2},$

 $\sigma_{x_m x_1 x_2} \circ_G \sigma_{x_m x_1 x_2} = \sigma_{x_m x_m x_m x_1 x_2}.$

We get $\sigma_{x_m x_1 x_2}$ is idempotents in $Hyp_{GN_{\varphi}}(V)$ which is not idempotents in $Hyp_G(2)$.

All idempotent elements of $Hyp_{GN_{\varphi}}(V)$ are $\{\sigma_{x_1}, \sigma_{x_2}, \sigma_{x_1x_1}, \sigma_{x_1x_2}, \sigma_{x_2x_2}, \sigma_{x_1x_1x_2}, \sigma_{x_1x_1x_2x_1}, \sigma_{x_1x_1x_2x_2}, \sigma_{x_2x_1x_1x_2}, \sigma_{x_2x_1x_1x_2}, \sigma_{x_2x_1x_1x_2}, \sigma_{x_2x_1x_1x_2x_2}, \sigma_{x_2x_1x_1x_2}, \sigma_{x_2x_1x_1x_2x_2}, \sigma_{x_2x_1x_1x_2x_2}, \sigma_{x_2x_1x_1x_2x_2x_1}, \sigma_{x_2x_1x_1x_2x_2}\} \cup \{\sigma_t | t \in [s] \text{ where } [s] \in \{[x_{k_1}^{i_1} x_{k_2}^{i_2} \dots x_{k_j}^{i_j}], [x_1 x_{k_1}^{i_1} x_{k_2}^{i_2} \dots x_{k_j}^{i_j}], [x_1 x_{k_1}^{i_1} x_{k_2}^{i_2} \dots x_{k_j}^{i_j}], [x_1 x_2 x_{k_1}^{i_1} x_{k_2}^{i_2} \dots x_{k_{2j-1}}^{i_{2j-1}}], [x_{k_1}^{i_1} x_{k_2}^{i_2} \dots x_{k_j}^{i_j} x_1], [x_1 x_{k_1}^{i_1} x_{k_2}^{i_2} \dots x_{k_j}^{i_j} x_2], [x_1 x_1 x_{k_1}^{i_1} x_{k_2}^{i_2} \dots x_{k_j}^{i_j} x_1], [x_1 x_{k_1}^{i_1} x_{k_2}^{i_2} \dots x_{k_j}^{i_{2j-1}} x_1], [x_1 x_{k_1}^{i_1} x_{k_2}^{i_2} \dots x_{k_j}^{i_{2j-1}} x_1], [x_1 x_{k_1}^{i_1} x_{k_2}^{i_2} \dots x_{k_j}^{i_j} x_1], [x_1 x_{k_1}^{i_1} x_{k_2}^{i_2} \dots x_{k_j}^{i_j} x_1], [x_1 x_{k_1}^{i_1} x_{k_2}^{i_2} \dots x_{k_j}^{i_j} x_1], [x_1 x_2 x_{k_1}^{i_1} x_{k_2}^{i_2} \dots x_{k_j}^{i_j}], [x_1 x_2 x_{k_1}^{i_1} x_{k_2}^{i_2} \dots x_{k_j}^{i_j}], [x_1 x_2 x_{k_1}^{i_1} x_{k_2}^{i_2} \dots x_{k_j}^{i_j}], [x_1 x_1 x_2 x_{k_1}^{i_1} x_{k_2}^{i_2} \dots x_{k_j}^{i_j}], [x_1 x_1$

Now we consider which varieties at most the idempotents of $Hyp_G(2)$ are idempotent of $Hyp_{GN_{\varphi}}(V)$.

Theorem 3.1. For a variety V of semigroups the following are equivalent:

- (i) $Mod\{(xy)z \approx x(yz), xy \approx yx\} \subseteq V.$
- (ii) $\{\sigma | \sigma \in Hyp_{GN_{\varphi}}(V) \text{ and } \sigma \circ_{GN} \sigma = \sigma\} = \{\sigma | \sigma \in Hyp_G(2) \text{ and } \sigma \circ_G \sigma = \sigma\} \cap Hyp_{GN_{\varphi}}(V) \text{ for each choice function } \varphi.$

Proof. Let $x_i \in W_{(2)}(X)$ where i > 2 and l(t) denote the length of t where $t \in W_{(2)}(X)$. Let φ be an arbitrary choice function.

 $(i) \Rightarrow (ii)$

Let $Mod\{(xy)z \approx x(yz), xy \approx yx\} \subseteq V$. It is clear that $\{\sigma | \sigma \in Hyp_G(2) \text{ and } \sigma \circ_G \sigma = \sigma\} \cap Hyp_{GN_{\varphi}}(V) \subseteq \{\sigma | \sigma \in Hyp_{GN_{\varphi}}(V) \text{ and } \sigma \circ_{GN} \sigma = \sigma\}$ for each choice function φ .

Conversely, let $\sigma_w \in \{\sigma | \sigma \in Hyp_{GN_{\varphi}}(V) \text{ and } \sigma \circ_{GN} \sigma = \sigma\}$ and σ_w is not idempotent in $Hyp_G(2)$. Since $yx \approx xy, x_is \approx x_1s$ and $tx_i \approx tx_2$ (where $s \in W^G_{(2)}(\{x_1\})$), $t \in W^G_{(2)}(\{x_2\})$) are identity in V, so we choose xy, x_1s, tx_2 are respresentatives of its classes in $Hyp_{GN_{\varphi}}(V)$. Then $yx, x_is, tx_i \notin Hyp_{GN_{\varphi}}(V)$. Since σ_w is not idempotent in $Hyp_G(2)$ and $\sigma_w \neq \sigma_{yx}, \sigma_{x_is}, \sigma_{tx_i}$, so σ_w has infinite order.

Since σ_w has infinite order, so $l(\sigma_w) \neq l(\sigma_w \circ_G \sigma_w)$. We get $\sigma_w \approx (\sigma_w \circ_G \sigma_w) \notin IdMod\{(xy)z \approx x(yz), xy \approx yx\}$. But σ_w is idempotent on $Hyp_{GN_{\varphi}}(V)$, so $l(\sigma_w) = l(\sigma_w \circ_G \sigma_w) = l(\varphi(\sigma_w \circ_G \sigma_w))$, i.e. , $\sigma_w \approx (\sigma_w \circ_G \sigma_w) \in IdV$, a contradiction. So $IdV \subseteq IdMod\{(xy)z \approx x(yz), xy \approx yx\}$.

 $(ii) \Rightarrow (i)$

Let $\{\sigma | \sigma \in Hyp_{GN_{\varphi}}(V) \text{ and } \sigma \circ_{GN} \sigma = \sigma\} = \{\sigma | \sigma \in Hyp_G(2) \text{ and } \sigma \circ_G \sigma = \sigma\} \cap Hyp_{GN_{\varphi}}(V) \text{ for each choice function } \varphi.$

Assume that $Mod\{(xy)z \approx x(yz), xy \approx yx\} \notin V$. Then there exists $x^k \approx x^n \in IdV$ with $1 \leq k \leq n \in \mathbb{N}$. Next, we will construct an idempotent element of $Hyp_{GN_{\varphi}}(V)$ which is not in $P_G(2) \cup E_{x_1}^G \cup E_{x_2}^G \cup G \cup \{\sigma_{id}\}$. We consider into six cases:

Case 1 : We set m = n - k and $w = f(f(x_1, x_1), u)$ where $u \in W_{x_1}$. Clearly, $\sigma_w \notin P_G(2) \cup E_{x_1}^G \cup E_{x_2}^G \cup G \cup \{\sigma_{id}\}$. It is easy to see that the length of σ_w is 3km and the length of $(\sigma_w \circ_G \sigma_w)$ is $(3km)^2$. In fact, from $x^k \approx x^n \in IdV$ it follows that $x^a \approx x^{a+bm} \in IdV$ for all $a \ge k$ and $b \ge 1$ where $a, b \in \mathbb{N}$. Then we have $x^{3km} \approx x^{3km+(9k^2m-3k)m} = x^{3km+9k^2m^2-3km} = x^{9k^2m^2} = x^{(3km)^2}$. Hence $\sigma_w(f) \approx x^{3km} \approx x^{(3km)^2} \approx (\sigma_w \circ_G \sigma_w)(f)$.

Case 2 : We set m = n - k and $w = f(f(f(...f(x_1, x_i), ...), x_i), x_i)$. Clearly, $\sigma_w \notin P_G(2) \cup E_{x_1}^G \cup E_{x_2}^G \cup G \cup \{\sigma_{id}\}$. It is easy to see that the length of σ_w is km + 1 and the length of $(\sigma_w \circ_G \sigma_w)$ is $(km)^2 + 1$. In fact, from $x^k \approx x^n \in IdV$ it follows that $x^a \approx x^{a+bm} \in IdV$ for all $a \ge k$ and $b \ge 1$ where $a, b \in \mathbb{N}$. Then we have $x^{km} \approx x^{km+(k^2m-k)m} = x^{km+k^2m^2-km} = x^{k^2m^2} = x^{(km)^2}$. Hence $\sigma_w(f) \approx x^{km} \approx x^{(km)^2} \approx (\sigma_w \circ_G \sigma_w)(f)$.

Case 3 : From $x^k \approx x^n \in IdV$ implies $x_1^n x_i^r \approx x_1^k x_i^s \in IdV$. We set m = n - k, t = r - s and $w = f(f(x_1, x_1), u)$ where $u \in W_{(2)}^G(\{x_1\})$. Clearly, $\sigma_w \notin P_G(2) \cup E_{x_1}^G \cup E_{x_2}^G \cup G \cup \{\sigma_{id}\}$. It is easy to see that the length of σ_w is 2km + st and the length of $(\sigma_w \circ_G \sigma_w)$ is $(2km)^2 + st(2km + 1)$. In fact, from $x_1^n x_i^r \approx x_1^k x_i^s$ it follows that $x_1^a x_i^c \approx x_1^{a+bm} x_i^{c+dt} \in IdV$ for all $a \ge k, b \ge 1$ $c \ge s$ and $d \ge 1$ where $a, b, c, d \in \mathbb{N}$. The we have $x_1^{2km} \approx x_1^{2km+(4k^2m-2k)m} = x_1^{2km+4k^2m^2-2km} = x_1^{4k^2m^2} = x_1^{(2km)^2}$ and $x_i^{st} \approx x_i^{st+(2kms)t} = x_i^{st+2kmst} = x_i^{st(2km+1)}$. Hence $\sigma_w(f) \approx x_1^{2km} x_i^{st} \approx x_i^{2km} x_i^{st} \approx x_i^{st+2kmst} = x_i^{st(2km+1)}$.

506

The Order of Normal Form Generalized Hypersubstitutions of Type $\tau = (2)$ 507

 $\begin{aligned} x_1^{(2km)^2} x_i^{st(2km+1)} &\approx (\sigma_w \circ_G \sigma_w)(f). \\ \text{Case 4 : We set } m = n - k \text{ and } w = f(u, f(x_2, x_2)) \text{ where } u \in W_{x_2}. \\ \text{Case 5 : We set } m = n - k \text{ and } w = f(x_i, f(x_i, \dots f(x_i, x_2) \dots)). \\ \text{Case 6 : From } x^k &\approx x^n \in IdV \text{ implies } x_i^r x_2^n &\approx x_i^s x_2^k \in IdV. \text{ We set } m = n - k, \\ t = r - s \text{ and } w = f(u, f(x_2, x_2)) \text{ where } u \in W_{(2)}^G(\{x_2\}). \end{aligned}$

The proof of Case 4, 5, 6 is similar to Case 1, 2, 3 respectively.

From all cases, we have $(\sigma_w \circ_G \sigma_w) \sim_{VG} \sigma_w$. And from (ii), $(\sigma_w \circ_{GN} \sigma_w) \sim_{VG} (\sigma_w \circ_G \sigma_w)$. So $(\sigma_w \circ_{GN} \sigma_w) \sim_{VG} (\sigma_w \circ_G \sigma_w) \sim_{VG} \sigma_w$ it follows that $\sigma_w \circ_{GN} \sigma_w = \sigma_w$. Therefore σ_w is idempotent on $Hyp_{GN_{\varphi}}(V)$, a contradiction.

4. Elements of Infinite Order

In this section, we will characterize the set of all elements in $Hyp_{GN_{\varphi}}(V)$ which have infinite order where $V = Mod\{(xy)z \approx x(yz), xy \approx yx\}$. Let $O(\sigma)$ denote the order of the generalized hypersubstitution $\sigma \in Hyp_{GN_{\varphi}}(V)$.

Theorem 4.1. Let V be a variety of semigroups and $\langle \sigma \rangle_{\circ_{GN}}$ be the cyclic subsemigroup generated by σ . Then following are equivalent:

- (i) $Mod\{(xy)z \approx x(yz), xy \approx yx\} \subseteq V.$
- (ii) $\{\sigma | \sigma \in Hyp_{GN_{\varphi}}(V) \text{ and the order of } \sigma \text{ is infinite}\} = Hyp_{GN_{\varphi}}(V) \setminus (A_1 \cup A_2 \cup A_3 \cup A_4) \text{ where}$ $A_1 = P_G(2) \cup E_{x_1}^G \cup E_{x_2}^G \cup G \cup \{\sigma_{id}\} \cup \{\sigma_{f(x_2,x_1)}\}$ $A_2 = \{\sigma \mid \sigma \in Hyp_{GN_{\varphi}}(V) \cap (T_1 \cup \{\sigma_v \mid v \in W_{(2)}^G(\{x_1\}) \text{ where leftmost}(v) = x_1\} \setminus \sigma_{x_1} \cup \sigma_{f(x_1,s)} \text{ where } s \in W_{(2)}^G(\{x_1\}) \text{ and } \langle \sigma \rangle_{\circ_{GN}} \cap \{\sigma_{x_1u} \mid u \in W_2(X)\} \neq \emptyset)\}$ $A_3 = \{\sigma \mid \sigma \in Hyp_{GN_{\varphi}}(V) \cap (T_2 \cup \{\sigma_v \mid v \in W_{(2)}^G(\{x_2\}) \text{ where rightmost}(v) = x_2\} \setminus \sigma_{x_2} \cup \sigma_{f(s,x_2)} \text{ where } s \in W_{(2)}^G(\{x_2\}) \text{ and } \langle \sigma \rangle_{\circ_{GN}} \cap \{\sigma_{ux_2} \mid u \in W_2(X)\} \neq \emptyset)\}.$

Proof. Let $x_i \in W_{(2)}(X)$ where i > 2 and l(t) denote the length of t where $t \in W_{(2)}(X)$. Let φ be an arbitrary choice function.

 $(i) \Rightarrow (ii)$

Let $Mod\{(xy)z \approx x(yz), xy \approx yx\} \subseteq V$. We will show that $\{\sigma | \sigma \in Hyp_{GN_{\varphi}}(V)$ and the order of σ is infinite $\} = Hyp_{GN_{\varphi}}(V) \setminus (A_1 \cup A_2 \cup A_3)$. Let σ_w has infinite order on $Hyp_{GN_{\varphi}}(V)$. Since A_1 is set of all idempotent on $Hyp_{GN_{\varphi}}(V)$, i.e., all elements of A_1 has order 1. So $\sigma_w \notin A_1$. Assume that $\sigma_w \in A_2$ ($\sigma_w \in A_3$), then there exists a word $u \in W_2(X)$ ($s \in W_2(X)$) such that $\sigma_{x_1u} \in \langle \sigma \rangle_{\circ_{GN}}$ ($\sigma_{sx_2} \in \langle \sigma \rangle_{\circ_{GN}}$). We get $\sigma_{x_1u} = \sigma_w^m$ for each $m \in \mathbb{N}$ ($\sigma_{sx_2} = \sigma_w^n$ for each $n \in \mathbb{N}$) and $O(\sigma_{x_1u}) = 1$ ($O(\sigma_{sx_2}) = 1$), so $O(\sigma_w^m) = 1$ ($O(\sigma_w^n) = 1$), i.e., σ_w^m is idempotent on $Hyp_{GN_{\varphi}}(V)$, contradicts to $O(\sigma_w^m) = \infty$. Thus $\sigma_w \notin (A_1 \cup A_2 \cup A_3)$. Hence $\sigma_w \in Hyp_{GN_{\varphi}}(V) \setminus (A_1 \cup A_2 \cup A_3)$. $(ii) \Rightarrow (i)$

Let $\{\sigma | \sigma \in Hyp_{GN_{\varphi}}(V) \text{ and the order of } \sigma \text{ is infinite}\} = Hyp_{GN_{\varphi}}(V) \setminus (A_1 \cup A_2 \cup A_3 \cup A_4).$

Assume that $Mod\{(xy)z \approx x(yz), xy \approx yx\} \not\subseteq V$. Then there exists $x^k \approx x^n \in IdV$ with $1 \leq k \leq n \in \mathbb{N}$. We consider into two cases:

Case 1 : We set m = n - k and $w = f(f(...f(x_1, x_2), ..., x_2), x_2)$. Clearly, $\sigma_w \notin (A_1 \cup A_2 \cup A_3)$. It is easy to see that the length of σ_w is km + 1 and the length of $(\sigma_w \circ_G \sigma_w)$ is $(km)^2 + 1$. In fact, from $x^k \approx x^n \in IdV$ it follows that $x^a \approx x^{a+bm} \in IdV$ for all $a \ge k$ and $b \ge 1$ where $a, b \in \mathbb{N}$. Then we have $x^{km} \approx x^{km+(k^2m-k)m} = x^{km+k^2m^2-km} = x^{(km)^2}$. Hence $\sigma_w(f) \approx x_1 x_2^{km} \approx x_1 x_2^{(km)^2} \approx (\sigma_w \circ_G \sigma_w)(f)$.

Case 2: We set m = n - k and $w = f(f(...f(x_1, f(x_2, x_i)), ..., x_i), x_i)$. Clearly, $\sigma_w \notin (A_1 \cup A_2 \cup A_3)$. It is easy to see that the length of σ_w is km and the length of $(\sigma_w \circ_G \sigma_w)$ is km(km + 2). In fact, from $x^k \approx x^n \in IdV$ it follows that $x^a \approx x^{a+bm} \in IdV$ for all $a \ge k$ and $b \ge 1$ where $a, b \in \mathbb{N}$. Then we have $x^{km} \approx x^{km+(k^2m+k)m} = x^{km+k^2m^2+km} = x^{(km)^2+2km} = x^{km(km+2)}$. Hence $\sigma_w(f) \approx x_1 x_2 x_m^{km} \approx x_1 x_2 x_m^{km(km+2)} \approx (\sigma_w \circ_G \sigma_w)(f)$.

From all cases, we have $(\sigma_w \circ_G \sigma_w) \sim_{VG} \sigma_w$. And from (ii), $(\sigma_w \circ_{GN} \sigma_w) \sim_{VG} (\sigma_w \circ_G \sigma_w)$. So $(\sigma_w \circ_{GN} \sigma_w) \sim_{VG} (\sigma_w \circ_G \sigma_w) \sim_{VG} \sigma_w$ it follows $\sigma_w \circ_{GN} \sigma_w = \sigma_w$. Therefore σ_w is idempotent on $Hyp_{GN_{\varphi}}(V)$, a contradiction.

Acknowledgements. The corresponding author was supported by Chiang Mai University, Chiang Mai 50200, Thailand.

References

- K. Denecke, K. Mahdavi, *The Order of Normal Form Hypersubstitutions of Type (2)*, Discussiones Mathematicae General Algebra and Applications, **20**(2000), 183-192.
- [2] K. Denecke, Sh. L. Wismath, *Hyperidentities and clones*, Gordon and Breach Sci. Publ., Amsterdam-Singapore(2000).
- S. Leeratanavalee, K. Denecke, Generalized Hypersubstitutions and Strongly Solid Varieties, In General and Applications, Proc. of "59th Workshop on General Algebra", "15th Conference for Young Algebraists Potsdam 2000", Shaker Verlag(2000), 135-145.
- [4] S. Leeratanavalee, S. Phatchat, Pre-Strongly Solid and Left-Edge (Right-Edge)-Strongly Solid Varieties of Semigroups, International Journal of Algebra, 1(5)(2007), 205-226.
- [5] J. Płonka, Proper and Inner Hypersubstitutions of Varieties, In proceedings of the International Conference : Summer School on General Algebra and Ordered Set 1994, Pałacky University Olomouc (1994), 106-115.

508

The Order of Normal Form Generalized Hypersubstitutions of Type $\tau = (2)$ 509

[6] W. Puninagool, S. Leeratanavalee, The Order of Generalized Hypersubstitutions of Type $\tau = (2)$, International Journal of Mathematics and Mathematical Science, Vol. 2008, Article ID 263541, 8 pages, doi:10.1155/2008/263541.