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ABSTRACT. In 2000, K. Denecke and K. Mahdavi showed that there are many idempotent
elements in Hypn, (V') the set of normal form hypersubstitutions of type 7 = (2) which
are not idempotent elements in Hyp(2) the set of all hypersubstitutions of type 7 =
(2). They considered in which varieties, idempotent elements of Hyp(2) are idempotent
elements of Hypn, (V). In this paper, we study the similar problems on the set of all
generalized hypersubstitutions of type 7 = (2) and the set of all normal form generalized
hypersubstitutions of type 7 = (2) and determine the order of normal form generalized
hypersubstitutions of type 7 = (2).

1. Introduction

The order of generalized hypersubstitutions of type 7 = (2) was studied by W.
Puninagool and S. Leeratanavalee [6]. In this paper, we used the order of generalized
hypersubstitutions of type 7 = (2) as a tool to characterize the order of normal form
generalized hypersubstitutions of type 7 = (2).

A generalized hypersubstitution of type 7 = (n;);er is a mapping o which maps
each n;-ary operation symbol to the set W, (X) of all terms of type 7 built up by
operation symbols from { f;|¢ € I'} where f; is n;-ary and variables from a countably
infinite alphabet X := {1, 22,3, ...} which dose not necessarily preserve the arity.
We denote the set of all generalized hypersubstitutions of type 7 by Hypg(7). To
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define a binary operation on Hypg(7), we define at first the concept of generalized
superposition of terms S™ : W, (X)™+!1 — W_(X) by the following steps:

(i) ft=ux;,1 <j<m,then S™(z;,t1,....,tm) =1;.

(i) ft=x;,m < j €N, then S™(x;,t1,...,tm)

(111) Ift= fi(Sl, veny Sn,i), then
Sm(t,tl, ,tm) = fi(Sm(Sl,tl, ...,tm)7 ceey Sm(sm,tl, ,tm))

il'j.

We extend a generalized hypersubstitution o to a mapping ¢ : W (X) —
W, (X) inductively defined as follows:

(i) olx] =2z € X,

(i) o[fi(t1,...stn,)] := S™(0(fi),0[t1], ..., 6[tn;]), for any n,-ary operation symbol
i, supposed that &[t;],1 < j < n; are already defined.

Then we define a binary operation og on Hypg(T) by o1 og 02 := &1 0 09
where o denotes the usual composition of mappings and o1,09 € Hypg (7). Let 04q
be the hypersubstitution which maps each n;-ary operation symbol f; to the term

fi(xh ,.’Enl)

In [3], S. Leeratanavalee and K. Denecke proved that: For arbitrary terms
t,t1,...,t, € W-(X) and for arbitrary generalized hypersubstitutions o,01, 09 we
have

(i) S™(olt],oft1], .., oltn]) = [S™(t, t1, ..oy tn)],
(11) (6’1 OO'Q)A: 61 06'2.

It turns out that Hypg(7) = (Hypc(7); 06, 0i4) is a monoid where ;4 is the
identity element and the set of all hypersubstitutions of type 7 forms a submonoid
of Hypg(7).

For more details on generalized hypersubstitutions see [3]. In this paper, we
consider the type 7 = (2) with the binary operation symbol, say f. Let W, denote
the set of all words using only the letter 2, and dually for W,,. For s € W5 (X),
we denote :

os := the generalized hypersubstitution which maps the binary operation f
to the term s,

leftmost(s) := the first variable (from the left) that occurs in s,

rightmost(s) := the last variable (from the right) that occurs in s,

Wg)({xl}) = {s € Wiy (X)|z1 € var(s), 2 ¢ var(s)},

W(%({xg}) = {s € Wiy (X)|z2 € var(s),z1 ¢ var(s)},

WE = {t € W)(X)|t ¢ X, 21,22 € var(t)},

G :={0s € Hypg(2)|s € Wia)(X)\X, w1, 22 & var(s)},
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Pg(Q) = {Uzi S Hypg(Q)‘Z eN,z; € X},
ES = {0}(,.) € Hypc(2)|s € Wia)(X), 22 ¢ var(s)},
ES = {0}(s.00) € Hypc(2)|s € Wia)(X), 21 ¢ var(s)},
T, :={os € Hypc(2)|s € W(%({xl}) and leftmost(s) = x,,} where m > 2,
Ty :={os € Hypa(2)|s € Wg)({xg}) and rightmost(s) = x,,} where m > 2.
In [6], W. Puninagool and S. Leeratanavalee proved that the following state-
ments hold.

(i) Let oy be a generalized hypersubstitution of type 7 = (2). Then o; is idem-
potent if and only if 6[t] = ¢.

(ii) Pg(2) UEQCG1 UES UGU{0i4} is the set of all idempotent elements in Hypg(2).

2

(ili) Ty UTo U{0f(qs,0,)} is the set of all elements has order 2 in Hypa(2).
(iv) If o € Hypa(2)\ (Pe(2)UES UES UG U{0:} UT1 UTo U{0 f(4y.21)}), then

o™ # o™t for all n € N with n > 1 (i.e. o has infinite order).

(v) If o € Hype(2)\ (Pc(2)UES UES UG U {0} UT1 UTo U{0f(sy.21)}), then

2

the length of the word (o op, 0)(f) is greater than the length of o(t).

2. Normal Form Generalized Hypersubstitutions

The concept of normal form hypersubstitutions was introduced by J. Plonka in
1994 [5]. In [4], S. Leeratanavalee and K. Denecke generalized the concept of normal
form hypersubstitutions to normal form generalized hypersubstitutions. We recall
first the definition of V-generalized equivalent.

Definition 2.1. Let V be a variety of type 7. Two generalized hypersubstitu-
tions o1 and o9 of type 7 are called V-generalized equivalent if o1(f;) ~ o2(f;) are
identities in V for all 4 € I. In this case we write o1 ~y g 02.

Clearly, the relation ~y ¢ is an equivalence relation on Hypg(7) and has the
following properties:

Proposition 2.2.([4]) Let V' be a variety of type 7 and let 01, 02 € Hypg(7). Then
the following are equivalent.

(i) g1 ~Yyag 02.
(ii) For all t € W, (X) the equation d1[t] & d3[t] is an identity in V.

In general, the relation ~y ¢ is not a congruence relation on Hypg(7). Let V
be a variety of type 7 and IdV be the set of identities satisfied in the variety V. If
s &t is an identity and for any o € Hypa(7),[s] =~ &[t] € IdV then s = t is called
a strong hyperidentity. A variety V is called strongly solid if every identity in V is
satisfied as a strong hyperidentity. For a strongly solid variety V the relation ~y ¢
is a congruence relation on Hypg(7) and the factor monoid Hypg(7)/~y exists.

In the arbitrary case we form also Hypg(2)/~, . and consider a choice function
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¢ Hypc(2)/~ye = Hypa(2), with ¢([oia]~y ) = 0id

which selects from each equivalence class exactly one element. Then we obtain the
set Hypan, (V) = p(Hypc(2)/~y ) of all normal form generalized hypersubstitu-
tions with respect to ~y ¢ and .

On the set Hypan, (V) we define a binary operation
ogn : Hypan, (V) x Hypan, (V) — Hypen, (V)

by o1 ogn 02 := (01 oG 02). This mapping is well-defined, but in general not
associative.

For example, we consider the variety V = Mod{(zy)z =~ z(yz), zyuv =~ zuyv,
23 ~ x}. Let f be our binary operation symbol and z122 abbreviates f(x1,32). So
we can construct the set W,y (X)/IdV. These are some elements in W4 (X)/IdV :
[@1]1av, [T2]1av, [Tm]1av, [T1Zm] 1av, [@mT1]1av, [T2Tm]1av, [@m@2)1av, [®121] 1av,
(o2 rav, [T122]1av, [X2®1]1av, [TmTk]1av, [Em@kTn]1av, [TmT12n] 1av, [@mT2Tn]1av,
[fﬂmwnﬁcl]ldv, [ﬂfmhl’l]fdv, [wmxﬂl]ldv, [xmxme]IdV7 [ﬂﬂmxwz]ldva
where m, k,n > 2.

So we get some corresponding elements in Hypan, (V) : 0z, 0ys 0z, iz, s
021302020 Oxpmaos Oxi215 Oxowe s Oxi120y Oxox1 9 O @i s O @k @n s Ok @10 s O oy s
Oxpmant1 Oxmaiz1r Oxmazoxt s Oxmam@or Oxmaixas Oxmaoxss Oxi1xpn@m s Ox121@m sy Ox1 20T )
Ourwprys Oxymwomy s Oxrzmaes Oxyziwes Oxiwozey Oxgxma,, Where m.k,n > 2. Since
Oxpw1s Oxiaomsr Oxyay € HypGNV,(V) we consider

(Ummml OGN 0111212) OGN Ozyxz1 = Ozx,yzy OGN Ozy2y = Oz

Oz,,x1 OGN (0'3313223:2 OGN O'xlxl) = 0O0zx,,x; OGN Oz = Ogy -
So (Hypan,(V);oan,0ia) is not a monoid.
We call this structure a groupoid of normal form generalized hypersubstitutions.

Next, we consider, how to characterize the idempotent elements of Hypgn,, (V')
where V' is a variety of semigroups.

Proposition 2.3. Let V be a variety of semigroups and let

¢ Hypg(2)/~ve — Hypc(2).
be a choice function. Then
(i) o € Hypgn, (V) is an idempotent element iff o og 0 ~yv¢ 0.

(11) Oz OGN Ozpmy = Oz if Oxpy € HypGng (V)v
Oy OGN Oxpay = Oxpzy, i Oz € HypGng (V') where m > 2,
O OGN Oxyz = Ozpay it Ozyz,, € Hypan, (V) where m > 2.
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Proof. (i) If o is an idempotent of Hypgn,, (V), then 0 ogn 0 = 0 ~v¢ (0 og ).
Conversely, we assume that o ~yg (0 og o). Because of o € Hypgn,(V), so
OOGN O = 0.

(ii) Since (0pyz; OGN Ozyzy) ~VG (Trsz) ©G Tzgey) = Ozizy, € Hypan, (V). Thus
Oxoxy OGN Ozoxy = Ogxqxa) (Uacmxl OGN O'xmxl) ~VG (Uxmarl Slel Uxm,xl) = Ozpzm ©

HypGNw(V)' Thus Ozpmaxy OGN Ogzpx1 = Ozx., and (0—17217,.,,, OGN Uzgzm) ~VG
(Uzgzm oG 0121,”) = Ogp,wm € HypGNv(V) Thus Oxozm OGN Oxoz,, = Oxpap,-
O

3. Idempotents in Hypon, (v)

In general, if o is an idempotent of Hypg(2) and o € Hypan,, (V), then it is
also an idempotent in Hypan,, (V) for any variety V' of semigroups and any choice
function ¢. But if ¢ is an idempotent in Hypgn, (V'), then it is not necessarily
be idempotent in Hyps(2). As an example, let V = Mod{(zy)z ~ x(yz), xyuv =
zuyv, 3 ~ x}. We consider

Ogpaxize OGN Oz z1xe — Oxppaixos

Oxmzi1zz OG Oxmzi@s = O2m@m@m @102

We get 04,,2,2, is idempotents in Hypgn, (V) which is not idempotents in
Hypc(2).
All idempotent elements of Hypan,, (V') are {0z, 0zys 02121, Tzr20s Oznras Oarzyzs
0.3313323?2 ) U$1£C2£C2£C1 k) lexlxle 9 0.3313313?23?2 ) U$2£C1$2$27 Ua_clexlxg 9 0.3313?13{?23?2301 ) 0$2$1$1$2$2}U
i1 .02 5 11 .02 25 i1 .02 125 -1
{olt € [s] where [s] € {[a}} @)}, ... |, [wr@y, @i o) ], [ @i ooy o],
-1 i1 .02 ij i1 .02 i i1 .02 251
| T172), [a:klxk2...:17ka2x2], [xlsclzklsckz..‘.mkj], [xlxgzklxk?...xk%il],

il ’i2 i2j
’I)kl ZL'kQ “'xkzj_—

i1 .02 15 i1 .02 1251 i1 .02 1 i1 .02 125—1
[xlxklxkrz...xijl], [xlmklxk2...xk2j_lx2], [xgxklxkg...xijg], [xklxkz-'-mkg_,»_1$1$1$2]a
i1 .02 ij i1 .02 ij i1 .02 ij i1 .02 251
[xlxgxgccklxkz.._.xkj}, [mlxlxklxk2...xij1], [xlxgzklku...mijg], [xlzlxklzkz...xk%ilzg},
i1 o 1251 i1 _io ij i1 .02 ij
[xgxgxklxh...ka_lxg], [wklku...xkjmlxlxgxg], [1‘1$1$21‘2$k11’k2...$kj]7
i1 .02 ij i1 .02 251 i1 .02 ij
[xlxgxgxklxkz...xijl], [xlxlxgxklxkz...xkzjilml], [$1$1$2$k1$k2---$kj$2],
i1 i G251 i1 o ij i1 .02 ij
[$2$1$2$k1$k2...l’k2j71$2], [x2$1$1xk1$k2‘..$kj$2], [xmxlxlxgxgxklxk2...xkj],
i1 .02 ij 11 .02 i i1 .02 125 .
[xlxlxgxgxklxk2...xijl], [$2$1$1$2$k1$k2...l‘kj.’ll‘z], [xmxlxgxklxkz...kuj]} where j >
1,k; > 3,i; <2 ky, # ky, for m # n and m > 3}.
Now we consider which varieties at most the idempotents of Hyps(2) are idem-

potent of Hypan,, (V).
Theorem 3.1. For a variety V of semigroups the following are equivalent:
(i) Mod{(zy)z = x(yz),xy = yx} C V.

(ii) {olo € Hypgn,(V) and 0 ogy 0 = 0} = {olo € Hypa(2) and 0 og 0 =
o} N Hypan, (V) for each choice function .
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Proof. Let x; € W(9)(X) where 4 > 2 and I(t) denote the length of ¢ where ¢ €
W2)(X). Let ¢ be an arbitrary choice function.
(i) = (i)

Let Mod{(zy)z ~ z(yz),zy ~ yx} C V. It is clear that {o|oc € Hypa(2) and
ocgogo =o}NHypan, (V) C {o|loc € Hypan, (V) and 0 ogy 0 = o} for each choice
function ¢.

Conversely, let 0, € {o|0c € Hypan, (V) and o0 ogn 0 = o} and oy, is not idem-
potent in Hypg(2). Since yx &~ xy, 2,8 ~ 15 and tx; ~ txs ( where s € W(%({acl}),

€ W(%({xz}) ) are identity in V, so we choose zy,x1s,txs are respresentatives
of its classes in Hypgn, (V). Then yx,x;s,tx; ¢ Hypon, (V). Since o, is not
idempotent in Hypg(2) and oy # 0yq, Oz, sy Ota;, SO 0y has infinite order.

Since o, has infinite order, so l(oy) # (0w oG o0w). We get 0, = (0w o
ow) ¢ IdMod{(zy)z ~ x(yz),ry =~ yr}. But o, is idempotent on Hypgn, (V),
so l(0y) = l(ow ogN 0w) = U(p(ow oG Ow)), 1.6. , 0w = (0w oG 0w) € IdV, a
contradiction. So IdV C IdMod{(xy)z = z(yz),xy ~ yx}.

(ii) = (i)

Let {o|loc € Hypgn,(V) and 0 ogy 0 = 0} = {o|o € Hypg(2) and 0 og 0 =
o} N Hypan, (V) for each choice function ¢.

Assume that Mod{(zy)z ~ x(yz),zy ~ yx} ¢ V. Then there exists 2% ~
"™ € IdV with 1 < k < n € N. Next, we will construct an idempotent element of
Hypen, (V) which is not in Pg(2) U ES UES UG U {0;4}. We consider into six
cases:

Case 1 : We set m = n —k and w = f(f(x1,21),u) where u € W,,. Clearly,
ow ¢ Pa(2)U Effl U Efz UG U {oiq}. It is easy to see that the length of oy, is
3km and the length of (o, og 0y,) is (3km)2. In fact, from 2% ~ 2" € IdV it
follows that z® ~ 29t ¢ IdV for all @ > k and b > 1 where a,b € N. Then
we have 3%m ~ xSkm+(9k2m—3k)m _ m316m—&-9k2mz—3k:m _ x9k2m2 _ m(Skm)z. Hence
Uw(f) Atk m(3km)2 ~ (O'w oG Uw)(f)

Case 2: Weset m =n—kand w= f(f(f(...f(z1,2;),...),2:),x;). Clearly, o, ¢
Pa(2) U Efl U EQLG2 UG U {oiq}. It is easy to see that the length of o, is km + 1
and the length of (o, og 0y,) is (km)? + 1. In fact, from 2% ~ 2™ € IdV it follows
that 2% ~ z%tP™ ¢ JdV for all @ > k and b > 1 where a,b € N. Then we have
pkm o phmt(RPm—k)m _ pkmAk*m®—km _ o k*m® _ .(km)®  [ence oul(f) ~ aFm ~
) (0w oc ow)(f).

Case 3 : From 2% ~ a™ € IdV implies 272" ~ z¥z5 € IdV. We set m = n — k,
t=r—sand w = f(f(z1,21),u) where u € Wg)({xl}) Clearly, o, ¢ Pg(Q)UEgU
ES UG U {0q}. Tt is easy to see that the length of o, is 2km + st and the length
of (04 oG 04) is (2km)? + st(2km + 1). In fact, from x727 ~ ¥z it follows that
xx ~ x‘f+bmxf+dt e€ldV foralla>k,b>1c¢>sand d> 1 where a,b,c,d € N.

m 2km+(4k*m—2k 22 2, 2 2km)2

The we have %™ ~ x] +akTm=2k)m _ x%km+4k m*—2km _ gdkm® = xg m)
t-+(2kms)t t(2km+1

xf +(2kms) x?t+2kmst xf (2km+1) 2km .5t o

and xf' ~ Hence o, (f) ~ x3*™z?
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m 2 S m
xg% ) xit(Qk +1) (0w 06 70 )(f)-

Case 4 : Weset m=n—k and w = f(u, f(x2,22)) where u € W,,.
Case 5 : Weset m =n—k and w = f(x;, f(x;,...f(xi, 22)...)).
Case 6 : From 2% ~ 2™ € IdV implies 2728 ~ zizk € IdV. We set m = n — k,
t=r—sand w= f(u, f(xe,22)) where u € Wg)({xg})
The proof of Case 4, 5, 6 is similar to Case 1, 2, 3 respectively.

From all cases, we have (o, 0g 0w) ~vg 0w. And from (ii), (o cgN 0w) ~va
(0woGow)- SO (0woaNTw) ~va (CwoGow) ~va Oy it follows that o0 N oW = 0.
Therefore o, is idempotent on Hypgn,, (V), a contradiction. m]

4. Elements of Infinite Order

In this section, we will characterize the set of all elements in Hypgn,, (V') which
have infinite order where V' = Mod{(zy)z = x(yz),xy ~ yx}. Let O(o) denote the
order of the generalized hypersubstitution o € Hypan,, (V).

Theorem 4.1. Let V be a variety of semigroups and (o)
group generated by o. Then following are equivalent:

oan be the cyclic subsemi-

(i) Mod{(xy)z = x(yz),ay ~ yz} C V.

(ii) {olo € Hypan, (V) and the order of o is infinite} = Hypan, (V)\(A1U A2 U
As U Ay) where
Al = Pg(2) U Efl U ESQ UuGu {Uid} U {Uf(rz,m)}
Ay = {o | o € Hypen,(V) N (T1 U{o, | v € Wg)({xl}) where leftmost(v)
= 21}\04, U0 ¢(z, ,5) where s € W(%({xl}) and () ooy W Ouwu | u € Wa(X)} #
0)}
Az ={o | o € Hypen,(V)N(ToU{o, |v € W(%({xg}) where rightmost(v)
= 22}\ 02, U0 f(5,0,) Where s € W(%({xg}) and (0)oqny M Ouw, | u € Wa(X)} #
0)}.

Proof. Let x; € W2y(X) where i > 2 and [(t) denote the length of ¢ where ¢ €
Wi2)(X). Let ¢ be an arbitrary choice function.

(D)=(i)

Let Mod{(zy)z = x(yz),zy ~ yx} € V. We will show that {o|oc € Hypan, (V)
and the order of ¢ is infinite} = Hypan, (V)\(A1 U A2 U A3). Let oy, has infinite
order on Hypgn, (V). Since A; is set of all idempotent on Hypan, (V) , i.e., all
elements of A; has order 1. So o, ¢ Ay. Assume that o, € Ay (0, € A3), then
there exists a word u € Wa(X) (s € Wa(X)) such that 04,4 € (0)ogy (Tszs €
(0Youn)- We get 04, = ol for each m € N (055, = oy for each n € N) and
O(0z,4) = 1 (O(0sz,) = 1), 80 O(c) =1 (O(o) = 1), i.e., o7 is idempotent
on Hypan,(V), contradicts to O(oy)) = co. Thus o, ¢ (A1 U A2 U A3). Hence
Oy € HypGsz (V)\(A1 UAs U A3)
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(i) =(i)

Let {o|loc € Hypgn, (V) and the order of o is infinite} = Hypan, (V)\(A41 U
As U A3 U Ay).

Assume that Mod{(zy)z ~ z(yz),zy ~ yz} ¢ V. Then there exists 2* ~ 2" €
IdV with 1 <k <n € N. We consider into two cases:

Case 1 : Weset m = n—k and w = f(f(...f(x1,22),...,22),22). Clearly,
ow & (A1 U Ay U A3z). Tt is easy to see that the length of o, is km + 1 and
the length of (0, og 0y) is (km)? + 1. In fact, from z*¥ ~ 2" € IdV it follows
that 2% ~ 29t ¢ JdV for all @ > k and b > 1 where a,b € N. Then we
have zF™ a ghm+Em—km — phm+k*m®—km — ;(km)*  fence ow(f) = mizk™ ~

$1mékm)2 ~ (0w oG ow)(f)-

Case 2 : Weset m=n—k and w = f(f(...f(x1, f(22,2;)), ..., x;), ;). Clearly,
ow & (A1 U Ay U Az). Tt is easy to see that the length of o, is km and the
length of (0, og 0y) is km(km + 2). In fact, from 2% ~ z" € IdV it follows
that z¢ ~ 2™ € IdV for all @ > k and b > 1 where a,b € N. Then we

have ka ~ ka+(k2m+k)m — ka+k2m2+km _ m(km)2+2km _ ka(km+2)' Hence
~ km km(km+2) _
ow(f) = z1202 ™ & X1 ToTm ~ (0w oG 0w)(f)-

From all cases, we have (o, og 0w) ~va 0w. And from (ii), (0w ogN ow) ~va
(Uw el Uw)- So (Uw OGN wa) ~VG (Jw el Uw) ~VG Ow it follows Ow OGN Ow = Ow-
Therefore o, is idempotent on Hypgn,, (V'), a contradiction. O
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