# The Order of Normal Form Generalized Hypersubstitutions of Type $\tau=(2)$ 

Sivaree Sudsanit
Department of Mathematics, Chiang Mai University, Chiang Mai, 50200, Thailand
$e$-mail: sivaree_sudsanit@hotmail.com
Sorasak Leeratanavalee*
Materials Science Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
e-mail: sorasak.1@cmu.ac.th
Abstract. In 2000, K. Denecke and K. Mahdavi showed that there are many idempotent elements in $H y p_{N_{\varphi}}(V)$ the set of normal form hypersubstitutions of type $\tau=(2)$ which are not idempotent elements in $H y p(2)$ the set of all hypersubstitutions of type $\tau=$ (2). They considered in which varieties, idempotent elements of $\operatorname{Hyp}(2)$ are idempotent elements of $H y p_{N_{\varphi}}(V)$. In this paper, we study the similar problems on the set of all generalized hypersubstitutions of type $\tau=(2)$ and the set of all normal form generalized hypersubstitutions of type $\tau=(2)$ and determine the order of normal form generalized hypersubstitutions of type $\tau=(2)$.

## 1. Introduction

The order of generalized hypersubstitutions of type $\tau=(2)$ was studied by W. Puninagool and S. Leeratanavalee [6]. In this paper, we used the order of generalized hypersubstitutions of type $\tau=(2)$ as a tool to characterize the order of normal form generalized hypersubstitutions of type $\tau=(2)$.

A generalized hypersubstitution of type $\tau=\left(n_{i}\right)_{i \in I}$ is a mapping $\sigma$ which maps each $n_{i}$-ary operation symbol to the set $W_{\tau}(X)$ of all terms of type $\tau$ built up by operation symbols from $\left\{f_{i} \mid i \in I\right\}$ where $f_{i}$ is $n_{i}$-ary and variables from a countably infinite alphabet $X:=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ which dose not necessarily preserve the arity. We denote the set of all generalized hypersubstitutions of type $\tau$ by $H y p_{G}(\tau)$. To

[^0]define a binary operation on $\operatorname{Hyp}_{G}(\tau)$, we define at first the concept of generalized superposition of terms $S^{m}: W_{\tau}(X)^{m+1} \longrightarrow W_{\tau}(X)$ by the following steps:
(i) If $t=x_{j}, 1 \leq j \leq m$, then $S^{m}\left(x_{j}, t_{1}, \ldots, t_{m}\right):=t_{j}$.
(ii) If $t=x_{j}, m<j \in \mathbb{N}$, then $S^{m}\left(x_{j}, t_{1}, \ldots, t_{m}\right):=x_{j}$.
(iii) If $t=f_{i}\left(s_{1}, \ldots, s_{n_{i}}\right)$, then
$$
S^{m}\left(t, t_{1}, \ldots, t_{m}\right):=f_{i}\left(S^{m}\left(s_{1}, t_{1}, \ldots, t_{m}\right), \ldots, S^{m}\left(s_{n_{i}}, t_{1}, \ldots, t_{m}\right)\right)
$$

We extend a generalized hypersubstitution $\sigma$ to a mapping $\hat{\sigma}: W_{\tau}(X) \longrightarrow$ $W_{\tau}(X)$ inductively defined as follows:
(i) $\hat{\sigma}[x]:=x \in X$,
(ii) $\hat{\sigma}\left[f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right]:=S^{n_{i}}\left(\sigma\left(f_{i}\right), \hat{\sigma}\left[t_{1}\right], \ldots, \hat{\sigma}\left[t_{n_{i}}\right]\right)$, for any $n_{i}$-ary operation symbol $f_{i}$, supposed that $\hat{\sigma}\left[t_{j}\right], 1 \leq j \leq n_{i}$ are already defined.

Then we define a binary operation $\circ_{G}$ on $H y p_{G}(\tau)$ by $\sigma_{1} \circ_{G} \sigma_{2}:=\hat{\sigma}_{1} \circ \sigma_{2}$ where $\circ$ denotes the usual composition of mappings and $\sigma_{1}, \sigma_{2} \in H y p_{G}(\tau)$. Let $\sigma_{i d}$ be the hypersubstitution which maps each $n_{i}$-ary operation symbol $f_{i}$ to the term $f_{i}\left(x_{1}, \ldots, x_{n_{i}}\right)$.

In [3], S. Leeratanavalee and K. Denecke proved that: For arbitrary terms $t, t_{1}, \ldots, t_{n} \in W_{\tau}(X)$ and for arbitrary generalized hypersubstitutions $\sigma, \sigma_{1}, \sigma_{2}$ we have
(i) $S^{n}\left(\sigma[t], \sigma\left[t_{1}\right], \ldots, \sigma\left[t_{n}\right]\right)=\hat{\sigma}\left[S^{n}\left(t, t_{1}, \ldots, t_{n}\right)\right]$,
(ii) $\left(\hat{\sigma}_{1} \circ \sigma_{2}\right)=\hat{\sigma}_{1} \circ \hat{\sigma}_{2}$.

It turns out that $\operatorname{Hyp}_{G}(\tau)=\left(\operatorname{Hyp}_{G}(\tau) ; \circ_{G}, \sigma_{i d}\right)$ is a monoid where $\sigma_{i d}$ is the identity element and the set of all hypersubstitutions of type $\tau$ forms a submonoid of $\underline{H y p_{G}(\tau)}$.

For more details on generalized hypersubstitutions see [3]. In this paper, we consider the type $\tau=(2)$ with the binary operation symbol, say $f$. Let $W_{x_{1}}$ denote the set of all words using only the letter $x_{1}$, and dually for $W_{x_{2}}$. For $s \in W_{(2)}(X)$, we denote :
$\sigma_{s}:=$ the generalized hypersubstitution which maps the binary operation $f$ to the term $s$,
leftmost $(s):=$ the first variable (from the left) that occurs in $s$,
rightmost $(s):=$ the last variable (from the right) that occurs in $s$,
$W_{(2)}^{G}\left(\left\{x_{1}\right\}\right):=\left\{s \in W_{(2)}(X) \mid x_{1} \in \operatorname{var}(s), x_{2} \notin \operatorname{var}(s)\right\}$,
$W_{(2)}^{G}\left(\left\{x_{2}\right\}\right):=\left\{s \in W_{(2)}(X) \mid x_{2} \in \operatorname{var}(s), x_{1} \notin \operatorname{var}(s)\right\}$,
$W^{G}:=\left\{t \in W_{(2)}(X) \mid t \notin X, x_{1}, x_{2} \in \operatorname{var}(t)\right\}$,
$G:=\left\{\sigma_{s} \in H y p_{G}(2) \mid s \in W_{(2)}(X) \backslash X, x_{1}, x_{2} \notin \operatorname{var}(s)\right\}$,
$P_{G}(2):=\left\{\sigma_{x_{i}} \in \operatorname{Hyp}_{G}(2) \mid i \in \mathbb{N}, x_{i} \in X\right\}$,
$E_{x_{1}}^{G}:=\left\{\sigma_{f\left(x_{1}, s\right)} \in \operatorname{Hyp}_{G}(2) \mid s \in W_{(2)}(X), x_{2} \notin \operatorname{var}(s)\right\}$,
$E_{x_{2}}^{G}:=\left\{\sigma_{f\left(s, x_{2}\right)} \in \operatorname{Hyp}_{G}(2) \mid s \in W_{(2)}(X), x_{1} \notin \operatorname{var}(s)\right\}$,
$T_{1}:=\left\{\sigma_{s} \in \operatorname{Hyp}_{G}(2) \mid s \in W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)\right.$ and $\left.\operatorname{leftmost}(s)=x_{m}\right\}$ where $m>2$,
$T_{2}:=\left\{\sigma_{s} \in \operatorname{Hyp}_{G}(2) \mid s \in W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)\right.$ and $\left.\operatorname{rightmost}(s)=x_{m}\right\}$ where $m>2$.
In [6], W. Puninagool and S. Leeratanavalee proved that the following statements hold.
(i) Let $\sigma_{t}$ be a generalized hypersubstitution of type $\tau=(2)$. Then $\sigma_{t}$ is idempotent if and only if $\hat{\sigma}[t]=t$.
(ii) $P_{G}(2) \cup E_{x_{1}}^{G} \cup E_{x_{2}}^{G} \cup G \cup\left\{\sigma_{i d}\right\}$ is the set of all idempotent elements in $H y p_{G}(2)$.
(iii) $T_{1} \cup T_{2} \cup\left\{\sigma_{f\left(x_{2}, x_{1}\right)}\right\}$ is the set of all elements has order 2 in $H y p_{G}(2)$.
(iv) If $\sigma \in \operatorname{Hyp}_{G}(2) \backslash\left(P_{G}(2) \cup E_{x_{1}}^{G} \cup E_{x_{2}}^{G} \cup G \cup\left\{\sigma_{i d}\right\} \cup T_{1} \cup T_{2} \cup\left\{\sigma_{f\left(x_{2}, x_{1}\right)}\right\}\right)$, then $\sigma^{n} \neq \sigma^{n+1}$ for all $n \in \mathbb{N}$ with $n \geq 1$ (i.e. $\sigma$ has infinite order).
(v) If $\sigma \in H y p_{G}(2) \backslash\left(P_{G}(2) \cup E_{x_{1}}^{G} \cup E_{x_{2}}^{G} \cup G \cup\left\{\sigma_{i d}\right\} \cup T_{1} \cup T_{2} \cup\left\{\sigma_{f\left(x_{2}, x_{1}\right)}\right\}\right)$, then the length of the word $\left(\sigma \circ_{h} \sigma\right)(f)$ is greater than the length of $\sigma(t)$.

## 2. Normal Form Generalized Hypersubstitutions

The concept of normal form hypersubstitutions was introduced by J. Płonka in 1994 [5]. In [4], S. Leeratanavalee and K. Denecke generalized the concept of normal form hypersubstitutions to normal form generalized hypersubstitutions. We recall first the definition of $V$-generalized equivalent.
Definition 2.1. Let $V$ be a variety of type $\tau$. Two generalized hypersubstitutions $\sigma_{1}$ and $\sigma_{2}$ of type $\tau$ are called $V$-generalized equivalent if $\sigma_{1}\left(f_{i}\right) \approx \sigma_{2}\left(f_{i}\right)$ are identities in $V$ for all $i \in I$. In this case we write $\sigma_{1} \sim_{V G} \sigma_{2}$.

Clearly, the relation $\sim_{V G}$ is an equivalence relation on $H y p_{G}(\tau)$ and has the following properties:
Proposition 2.2.([4]) Let $V$ be a variety of type $\tau$ and let $\sigma_{1}, \sigma_{2} \in H y p_{G}(\tau)$. Then the following are equivalent.
(i) $\sigma_{1} \sim_{V G} \sigma_{2}$.
(ii) For all $t \in W_{\tau}(X)$ the equation $\hat{\sigma_{1}}[t] \approx \hat{\sigma_{2}}[t]$ is an identity in $V$.

In general, the relation $\sim_{V G}$ is not a congruence relation on $H y p_{G}(\tau)$. Let $V$ be a variety of type $\tau$ and $I d V$ be the set of identities satisfied in the variety $V$. If $s \approx t$ is an identity and for any $\sigma \in \operatorname{Hyp}_{G}(\tau), \hat{\sigma}[s] \approx \hat{\sigma}[t] \in I d V$ then $s \approx t$ is called a strong hyperidentity. A variety $V$ is called strongly solid if every identity in $V$ is satisfied as a strong hyperidentity. For a strongly solid variety $V$ the relation $\sim_{V G}$ is a congruence relation on $H y p_{G}(\tau)$ and the factor monoid $\underline{H y p_{G}(\tau) / \sim_{V G}}$ exists.

In the arbitrary case we form also $H y p_{G}(2) / \sim_{\sim_{V G}}$ and consider a choice function

$$
\varphi: \operatorname{Hyp}_{G}(2) / \sim_{\sim_{V G}} \rightarrow \operatorname{Hyp}_{G}(2), \text { with } \varphi\left(\left[\sigma_{i d}\right]_{\sim_{V_{G}}}\right)=\sigma_{i d}
$$

which selects from each equivalence class exactly one element. Then we obtain the set $\operatorname{Hyp}_{G N_{\varphi}}(V):=\varphi\left(\operatorname{Hyp}(2) /{\sim_{V G}}\right)$ of all normal form generalized hypersubstitutions with respect to $\sim_{V G}$ and $\varphi$.

On the set $\operatorname{Hyp}_{G N_{\varphi}}(V)$ we define a binary operation

$$
\circ_{G N}: \operatorname{Hyp}_{G N_{\varphi}}(V) \times \operatorname{Hyp}_{G N_{\varphi}}(V) \rightarrow \operatorname{Hyp}_{G N_{\varphi}}(V)
$$

by $\sigma_{1}{ }^{\circ}{ }_{G N} \sigma_{2}:=\varphi\left(\sigma_{1} \circ_{G} \sigma_{2}\right)$. This mapping is well-defined, but in general not associative.

For example, we consider the variety $V=\operatorname{Mod}\{(x y) z \approx x(y z), x y u v \approx x u y v$, $\left.x^{3} \approx x\right\}$. Let $f$ be our binary operation symbol and $x_{1} x_{2}$ abbreviates $f\left(x_{1}, x_{2}\right)$. So we can construct the set $W_{(2)}(X) / I d V$. These are some elements in $W_{(2)}(X) / I d V$ : $\left[x_{1}\right]_{I d V},\left[x_{2}\right]_{I d V},\left[x_{m}\right]_{I d V},\left[x_{1} x_{m}\right]_{I d V},\left[x_{m} x_{1}\right]_{I d V},\left[x_{2} x_{m}\right]_{I d V},\left[x_{m} x_{2}\right]_{I d V},\left[x_{1} x_{1}\right]_{I d V}$, $\left[x_{2} x_{2}\right]_{I d V},\left[x_{1} x_{2}\right]_{I d V},\left[x_{2} x_{1}\right]_{I d V},\left[x_{m} x_{k}\right]_{I d V},\left[x_{m} x_{k} x_{n}\right]_{I d V},\left[x_{m} x_{1} x_{n}\right]_{I d V},\left[x_{m} x_{2} x_{n}\right]_{I d V}$, $\left[x_{m} x_{n} x_{1}\right]_{I d V},\left[x_{m} x_{1} x_{1}\right]_{I d V},\left[x_{m} x_{2} x_{1}\right]_{I d V},\left[x_{m} x_{m} x_{2}\right]_{I d V},\left[x_{m} x_{1} x_{2}\right]_{I d V}$, where $m, k, n>2$.

So we get some corresponding elements in $\operatorname{Hyp}_{G N_{\varphi}}(V): \sigma_{x_{1}}, \sigma_{x_{2}}, \sigma_{x_{m}}, \sigma_{x_{1} x_{m}}$, $\sigma_{x_{m} x_{1}}, \sigma_{x_{2} x_{m}}, \sigma_{x_{m} x_{2}}, \sigma_{x_{1} x_{1}}, \sigma_{x_{2} x_{2}}, \sigma_{x_{1} x_{2}}, \sigma_{x_{2} x_{1}}, \sigma_{x_{m} x_{k}}, \sigma_{x_{m} x_{k} x_{n}}, \sigma_{x_{m} x_{1} x_{n}}, \sigma_{x_{m} x_{2} x_{n}}$, $\sigma_{x_{m} x_{n} x_{1}}, \sigma_{x_{m} x_{1} x_{1}}, \sigma_{x_{m} x_{2} x_{1}}, \sigma_{x_{m} x_{m} x_{2}}, \sigma_{x_{m} x_{1} x_{2}}, \sigma_{x_{m} x_{2} x_{2}}, \sigma_{x_{1} x_{n} x_{m}}, \sigma_{x_{1} x_{1} x_{m}}, \sigma_{x_{1} x_{2} x_{m}}$, $\sigma_{x_{1} x_{m} x_{1}}, \sigma_{x_{1} x_{2} x_{1}}, \sigma_{x_{1} x_{m} x_{2}}, \sigma_{x_{1} x_{1} x_{2}}, \sigma_{x_{1} x_{2} x_{2}}, \sigma_{x_{2} x_{m} x_{n}}$, where $m, k, n>2$. Since $\sigma_{x_{m} x_{1}}, \sigma_{x_{1} x_{2} x_{2}}, \sigma_{x_{1} x_{1}} \in \operatorname{Hyp}_{G N_{\varphi}(V)}$ we consider

$$
\begin{gathered}
\left(\sigma_{x_{m} x_{1}} \circ_{G N} \sigma_{x_{1} x_{2} x_{2}}\right) \circ_{G N} \sigma_{x_{1} x_{1}}=\sigma_{x_{m} x_{1}} \circ_{G N} \sigma_{x_{1} x_{1}}=\sigma_{x_{m} x_{1}}, \\
\sigma_{x_{m} x_{1} \circ} \circ_{G N}\left(\sigma_{\left.x_{1} x_{2} x_{2} \circ_{G N} \sigma_{x_{1} x_{1}}\right)=\sigma_{x_{m} x_{1}} \circ_{G N} \sigma_{x_{1}}=\sigma_{x_{1}} .} .\right.
\end{gathered}
$$

So $\left(H y p_{G N_{\varphi}}(V) ; \circ_{G N}, \sigma_{i d}\right)$ is not a monoid.
We call this structure a groupoid of normal form generalized hypersubstitutions. Next, we consider, how to characterize the idempotent elements of $H_{y p_{G N_{\varphi}}}(V)$ where $V$ is a variety of semigroups.

Proposition 2.3. Let $V$ be a variety of semigroups and let

$$
\varphi: \operatorname{Hyp}_{G}(2) / \sim V G \rightarrow H y p_{G}(2) .
$$

be a choice function. Then
(i) $\sigma \in H y p_{G N_{\varphi}}(V)$ is an idempotent element iff $\sigma \circ_{G} \sigma \sim_{V G} \sigma$.
(ii) $\sigma_{x_{2} x_{1}} \circ_{G N} \sigma_{x_{2} x_{1}}=\sigma_{x_{1} x_{2}}$ if $\sigma_{x_{2} x_{1}} \in \operatorname{Hyp}_{G N_{\varphi}}(V)$,
$\sigma_{x_{m} x_{1}}{ }^{\circ}{ }_{G N} \sigma_{x_{m} x_{1}}=\sigma_{x_{m} x_{m}}$ if $\sigma_{x_{m} x_{1}} \in \operatorname{Hyp}_{G N_{\varphi}}(V)$ where $m>2$,
$\sigma_{x_{2} x_{m}} \circ_{G N} \sigma_{x_{2} x_{m}}=\sigma_{x_{m} x_{m}}$ if $\sigma_{x_{2} x_{m}} \in \operatorname{Hyp}_{G N_{\varphi}}(V)$ where $m>2$.

Proof. (i) If $\sigma$ is an idempotent of $\operatorname{Hyp}_{G N_{\varphi}}(V)$, then $\sigma \circ_{G N} \sigma=\sigma \sim_{V G}\left(\sigma \circ_{G} \sigma\right)$. Conversely, we assume that $\sigma \sim_{V G}\left(\sigma \circ_{G} \sigma\right)$. Because of $\sigma \in \operatorname{Hyp}_{G N_{\varphi}}(V)$, so $\sigma \circ_{G N} \sigma=\sigma$.
(ii) Since $\left(\sigma_{x_{2} x_{1}} \circ_{G N} \sigma_{x_{2} x_{1}}\right) \sim_{V G}\left(\sigma_{x_{2} x_{1}} \circ_{G} \sigma_{x_{2} x_{1}}\right)=\sigma_{x_{1} x_{2}} \in \operatorname{Hyp}_{G N_{\varphi}}(V)$. Thus $\sigma_{x_{2} x_{1}} \circ_{G N} \sigma_{x_{2} x_{1}}=\sigma_{x_{1} x_{2}},\left(\sigma_{x_{m} x_{1}} \circ_{G N} \sigma_{x_{m} x_{1}}\right) \sim_{V G}\left(\sigma_{x_{m} x_{1}} \circ_{G} \sigma_{x_{m} x_{1}}\right)=\sigma_{x_{m} x_{m}} \in$ $H y p_{G N_{\varphi}}(V)$. Thus $\sigma_{x_{m} x_{1}}{ }^{\circ} G N \sigma_{x_{m} x_{1}}=\sigma_{x_{m} x_{m}}$ and $\left(\sigma_{x_{2} x_{m}} \circ_{G N} \sigma_{x_{2} x_{m}}\right) \sim_{V G}$ $\left(\sigma_{x_{2} x_{m}}{ }^{\circ} G \sigma_{x_{2} x_{m}}\right)=\sigma_{x_{m} x_{m}} \in \operatorname{Hyp}_{G N_{\varphi}}(V)$. Thus $\sigma_{x_{2} x_{m}}{ }^{\circ}{ }_{G N} \sigma_{x_{2} x_{m}}=\sigma_{x_{m} x_{m}}$.

## 3. Idempotents in $\operatorname{Hyp}_{G N_{\varphi}(V)}$

In general, if $\sigma$ is an idempotent of $\operatorname{Hyp}_{G}(2)$ and $\sigma \in \operatorname{Hyp}_{G N_{\varphi}}(V)$, then it is also an idempotent in $H y p_{G N_{\varphi}}(V)$ for any variety $V$ of semigroups and any choice function $\varphi$. But if $\sigma$ is an idempotent in $\operatorname{Hyp}_{G N_{\varphi}}(V)$, then it is not necessarily be idempotent in $\operatorname{Hyp}_{G}(2)$. As an example, let $V=\operatorname{Mod}\{(x y) z \approx x(y z)$, xyuv $\approx$ xuyv, $\left.x^{3} \approx x\right\}$. We consider

$$
\begin{gathered}
\sigma_{x_{m} x_{1} x_{2}}{ }^{\circ}{ }_{G N} \sigma_{x_{m} x_{1} x_{2}}=\sigma_{x_{m} x_{1} x_{2}} \\
\sigma_{x_{m} x_{1} x_{2}}{ }^{\circ}{ }_{G} \sigma_{x_{m} x_{1} x_{2}}=\sigma_{x_{m} x_{m} x_{m} x_{1} x_{2}}
\end{gathered}
$$

We get $\sigma_{x_{m} x_{1} x_{2}}$ is idempotents in $\operatorname{Hyp}_{G_{N_{\varphi}}}(V)$ which is not idempotents in $H y p_{G}(2)$.

All idempotent elements of $\operatorname{Hyp}_{G N_{\varphi}}(V)$ are $\left\{\sigma_{x_{1}}, \sigma_{x_{2}}, \sigma_{x_{1} x_{1}}, \sigma_{x_{1} x_{2}}, \sigma_{x_{2} x_{2}}, \sigma_{x_{1} x_{1} x_{2}}\right.$, $\left.\sigma_{x_{1} x_{2} x_{2}}, \sigma_{x_{1} x_{2} x_{2} x_{1}}, \sigma_{x_{1} x_{1} x_{2} x_{1}}, \sigma_{x_{1} x_{1} x_{2} x_{2}}, \sigma_{x_{2} x_{1} x_{2} x_{2}}, \sigma_{x_{2} x_{1} x_{1} x_{2}}, \sigma_{x_{1} x_{1} x_{2} x_{2} x_{1}}, \sigma_{x_{2} x_{1} x_{1} x_{2} x_{2}}\right\} \cup$ $\left\{\sigma_{t} \mid t \in[s]\right.$ where $[s] \in\left\{\left[x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{j}}^{i_{j}}\right],\left[x_{1} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i 2} \ldots x_{k_{j}}^{i_{j}}\right],\left[x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{2 j-1}}^{i_{2 j-1}} x_{2}\right]\right.$, $\left[x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{2 j-1}}^{i_{2 j-1}} x_{1} x_{2}\right],\left[x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{j}}^{i_{j}} x_{2} x_{2}\right],\left[x_{1} x_{1} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{j}}^{i_{j}}\right],\left[x_{1} x_{2} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{2 j-1}}^{i_{2 j-1}}\right]$, $\left[x_{1} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{j}}^{i_{j}} x_{1}\right],\left[x_{1} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{2 j-1}}^{i_{2 j-1}} x_{2}\right],\left[x_{2} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{j}}^{i_{j}} x_{2}\right],\left[x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{2 j-1}}^{i_{2 j-1}} x_{1} x_{1} x_{2}\right]$, $\left[x_{1} x_{2} x_{2} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{j}}^{i_{j}}\right],\left[x_{1} x_{1} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{j}}^{i_{j}} x_{1}\right],\left[x_{1} x_{2} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{j}}^{i_{j}} x_{2}\right],\left[x_{1} x_{1} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{2 j-1}}^{i_{2 j-1}} x_{2}\right]$, $\left[x_{2} x_{2} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{2 j-1}}^{i_{2 j-1}} x_{2}\right],\left[x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{j}}^{i_{j}} x_{1} x_{1} x_{2} x_{2}\right],\left[x_{1} x_{1} x_{2} x_{2} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{j}}^{i_{j}}\right]$, $\left[x_{1} x_{2} x_{2} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{j}}^{i_{j}} x_{1}\right],\left[x_{1} x_{1} x_{2} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{2 j-1}}^{i_{2 j-1}} x_{1}\right],\left[x_{1} x_{1} x_{2} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{j}}^{i_{j}} x_{2}\right]$, $\left[x_{2} x_{1} x_{2} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{2 j-1}}^{i_{2 j-1}} x_{2}\right],\left[x_{2} x_{1} x_{1} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{j}}^{i_{j}} x_{2}\right],\left[x_{m} x_{1} x_{1} x_{2} x_{2} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{j}}^{i_{j}}\right]$, $\left.\left[x_{1} x_{1} x_{2} x_{2} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{j}}^{i_{j}} x_{1}\right],\left[x_{2} x_{1} x_{1} x_{2} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{j}}^{i_{j}} x_{2}\right],\left[x_{m} x_{1} x_{2} x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \ldots x_{k_{2 j}}^{i_{2 j}}\right]\right\}$ where $j \geq$ $1, k_{j} \geq 3, i_{j} \leq 2 ; k_{m} \neq k_{n}$ for $m \neq n$ and $\left.m \geq 3\right\}$.

Now we consider which varieties at most the idempotents of $H y p_{G}(2)$ are idempotent of $H y p_{G N_{\varphi}}(V)$.

Theorem 3.1. For a variety $V$ of semigroups the following are equivalent:
(i) $\operatorname{Mod}\{(x y) z \approx x(y z), x y \approx y x\} \subseteq V$.
(ii) $\left\{\sigma \mid \sigma \in H y p_{G N_{\varphi}}(V)\right.$ and $\left.\sigma \circ_{G N} \sigma=\sigma\right\}=\left\{\sigma \mid \sigma \in H y p_{G}(2)\right.$ and $\sigma \circ_{G} \sigma=$ $\sigma\} \cap \operatorname{Hyp}_{G N_{\varphi}}(V)$ for each choice function $\varphi$.

Proof. Let $x_{i} \in W_{(2)}(X)$ where $i>2$ and $l(t)$ denote the length of $t$ where $t \in$ $W_{(2)}(X)$. Let $\varphi$ be an arbitrary choice function.
(i) $\Rightarrow$ (ii)

Let $\operatorname{Mod}\{(x y) z \approx x(y z), x y \approx y x\} \subseteq V$. It is clear that $\left\{\sigma \mid \sigma \in H y p_{G}(2)\right.$ and $\left.\sigma \circ_{G} \sigma=\sigma\right\} \cap H y p_{G N_{\varphi}}(V) \subseteq\left\{\sigma \mid \sigma \in H y p_{G N_{\varphi}}(V)\right.$ and $\left.\sigma \circ_{G N} \sigma=\sigma\right\}$ for each choice function $\varphi$.

Conversely, let $\sigma_{w} \in\left\{\sigma \mid \sigma \in \operatorname{Hyp}_{G N_{\varphi}}(V)\right.$ and $\left.\sigma{ }^{\circ}{ }_{G N} \sigma=\sigma\right\}$ and $\sigma_{w}$ is not idempotent in $H y p_{G}(2)$. Since $y x \approx x y, x_{i} s \approx x_{1} s$ and $t x_{i} \approx t x_{2}$ ( where $s \in W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)$, $\left.t \in W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)\right)$ are identity in $V$, so we choose $x y, x_{1} s, t x_{2}$ are respresentatives of its classes in $\operatorname{Hyp}_{G N_{\varphi}}(V)$. Then $y x, x_{i} s, t x_{i} \notin \operatorname{Hyp}_{G N_{\varphi}}(V)$. Since $\sigma_{w}$ is not idempotent in $\operatorname{Hyp}_{G}(2)$ and $\sigma_{w} \neq \sigma_{y x}, \sigma_{x_{i} s}, \sigma_{t x_{i}}$, so $\sigma_{w}$ has infinite order.

Since $\sigma_{w}$ has infinite order, so $l\left(\sigma_{w}\right) \neq l\left(\sigma_{w} \circ_{G} \sigma_{w}\right)$. We get $\sigma_{w} \approx\left(\sigma_{w}{ }^{\circ}{ }_{G}\right.$ $\left.\sigma_{w}\right) \notin \operatorname{IdMod}\{(x y) z \approx x(y z), x y \approx y x\}$. But $\sigma_{w}$ is idempotent on $H y p_{G N_{\varphi}}(V)$, so $l\left(\sigma_{w}\right)=l\left(\sigma_{w} \circ_{G N} \sigma_{w}\right)=l\left(\varphi\left(\sigma_{w} \circ_{G} \sigma_{w}\right)\right)$, i.e. , $\sigma_{w} \approx\left(\sigma_{w} \circ_{G} \sigma_{w}\right) \in I d V$, a contradiction. So $\operatorname{Id} V \subseteq \operatorname{IdMod}\{(x y) z \approx x(y z), x y \approx y x\}$.
(ii) $\Rightarrow$ (i)

Let $\left\{\sigma \mid \sigma \in \operatorname{Hyp}_{G N_{\varphi}}(V)\right.$ and $\left.\sigma \circ_{G N} \sigma=\sigma\right\}=\left\{\sigma \mid \sigma \in H y p_{G}(2)\right.$ and $\sigma \circ_{G} \sigma=$ $\sigma\} \cap \operatorname{Hyp}_{G N_{\varphi}}(V)$ for each choice function $\varphi$.

Assume that $\operatorname{Mod}\{(x y) z \approx x(y z), x y \approx y x\} \nsubseteq V$. Then there exists $x^{k} \approx$ $x^{n} \in I d V$ with $1 \leq k \leq n \in \mathbb{N}$. Next, we will construct an idempotent element of $\operatorname{Hyp}_{G N_{\varphi}}(V)$ which is not in $P_{G}(2) \cup E_{x_{1}}^{G} \cup E_{x_{2}}^{G} \cup G \cup\left\{\sigma_{i d}\right\}$. We consider into six cases:
Case 1: We set $m=n-k$ and $w=f\left(f\left(x_{1}, x_{1}\right), u\right)$ where $u \in W_{x_{1}}$. Clearly, $\sigma_{w} \notin P_{G}(2) \cup E_{x_{1}}^{G} \cup E_{x_{2}}^{G} \cup G \cup\left\{\sigma_{i d}\right\}$. It is easy to see that the length of $\sigma_{w}$ is 3 km and the length of $\left(\sigma_{w} \circ_{G} \sigma_{w}\right)$ is $(3 \mathrm{~km})^{2}$. In fact, from $x^{k} \approx x^{n} \in I d V$ it follows that $x^{a} \approx x^{a+b m} \in I d V$ for all $a \geq k$ and $b \geq 1$ where $a, b \in \mathbb{N}$. Then we have $x^{3 k m} \approx x^{3 k m+\left(9 k^{2} m-3 k\right) m}=x^{3 k m+9 k^{2} m^{2}-3 k m}=x^{9 k^{2} m^{2}}=x^{(3 k m)^{2}}$. Hence $\sigma_{w}(f) \approx x^{3 k m} \approx x^{(3 k m)^{2}} \approx\left(\sigma_{w} \circ_{G} \sigma_{w}\right)(f)$.
Case 2: We set $m=n-k$ and $w=f\left(f\left(f\left(\ldots f\left(x_{1}, x_{i}\right), \ldots\right), x_{i}\right), x_{i}\right)$. Clearly, $\sigma_{w} \notin$ $P_{G}(2) \cup E_{x_{1}}^{G} \cup E_{x_{2}}^{G} \cup G \cup\left\{\sigma_{i d}\right\}$. It is easy to see that the length of $\sigma_{w}$ is $k m+1$ and the length of $\left(\sigma_{w} \circ_{G} \sigma_{w}\right)$ is $(k m)^{2}+1$. In fact, from $x^{k} \approx x^{n} \in I d V$ it follows that $x^{a} \approx x^{a+b m} \in I d V$ for all $a \geq k$ and $b \geq 1$ where $a, b \in \mathbb{N}$. Then we have $x^{k m} \approx x^{k m+\left(k^{2} m-k\right) m}=x^{k m+k^{2} m^{2}-k m}=x^{k^{2} m^{2}}=x^{(k m)^{2}}$. Hence $\sigma_{w}(f) \approx x^{k m} \approx$ $x^{(k m)^{2}} \approx\left(\sigma_{w} \circ_{G} \sigma_{w}\right)(f)$.
Case 3: From $x^{k} \approx x^{n} \in I d V$ implies $x_{1}^{n} x_{i}^{r} \approx x_{1}^{k} x_{i}^{s} \in I d V$. We set $m=n-k$, $t=r-s$ and $w=f\left(f\left(x_{1}, x_{1}\right), u\right)$ where $u \in W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)$. Clearly, $\sigma_{w} \notin P_{G}(2) \cup E_{x_{1}}^{G} \cup$ $E_{x_{2}}^{G} \cup G \cup\left\{\sigma_{i d}\right\}$. It is easy to see that the length of $\sigma_{w}$ is $2 k m+s t$ and the length of $\left(\sigma_{w}{ }^{\circ}{ }_{G} \sigma_{w}\right)$ is $(2 k m)^{2}+s t(2 k m+1)$. In fact, from $x_{1}^{n} x_{i}^{r} \approx x_{1}^{k} x_{i}^{s}$ it follows that $x_{1}^{a} x_{i}^{c} \approx x_{1}^{a+b m} x_{i}^{c+d t} \in I d V$ for all $a \geq k, b \geq 1 c \geq s$ and $d \geq 1$ where $a, b, c, d \in \mathbb{N}$. The we have $x_{1}^{2 k m} \approx x_{1}^{2 k m+\left(4 k^{2} m-2 k\right) m}=x_{1}^{2 k m+4 k^{2} m^{2}-2 k m}=x_{1}^{4 k^{2} m^{2}}=x_{1}^{(2 k m)^{2}}$ and $x_{i}^{s t} \approx x_{i}^{s t+(2 k m s) t}=x_{i}^{s t+2 k m s t}=x_{i}^{s t(2 k m+1)}$. Hence $\sigma_{w}(f) \approx x_{1}^{2 k m} x_{i}^{s t} \approx$
$x_{1}^{(2 k m)^{2}} x_{i}^{s t(2 k m+1)} \approx\left(\sigma_{w}{ }^{\circ}{ }_{G} \sigma_{w}\right)(f)$.
Case 4: We set $m=n-k$ and $w=f\left(u, f\left(x_{2}, x_{2}\right)\right)$ where $u \in W_{x_{2}}$.
Case 5: We set $m=n-k$ and $w=f\left(x_{i}, f\left(x_{i}, \ldots f\left(x_{i}, x_{2}\right) \ldots\right)\right)$.
Case 6: From $x^{k} \approx x^{n} \in I d V$ implies $x_{i}^{r} x_{2}^{n} \approx x_{i}^{s} x_{2}^{k} \in I d V$. We set $m=n-k$, $t=r-s$ and $w=f\left(u, f\left(x_{2}, x_{2}\right)\right)$ where $u \in W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)$.
The proof of Case $4,5,6$ is similar to Case $1,2,3$ respectively.
From all cases, we have $\left(\sigma_{w} \circ_{G} \sigma_{w}\right) \sim_{V G} \sigma_{w}$. And from (ii), $\left(\sigma_{w} \circ_{G N} \sigma_{w}\right) \sim_{V G}$ $\left(\sigma_{w}{ }^{\circ}{ }_{G} \sigma_{w}\right)$. So $\left(\sigma_{w}{ }^{\circ}{ }_{G N} \sigma_{w}\right) \sim_{V G}\left(\sigma_{w}{ }^{\circ}{ }_{G} \sigma_{w}\right) \sim_{V G} \sigma_{w}$ it follows that $\sigma_{w}{ }^{\circ}{ }_{G N} \sigma_{w}=\sigma_{w}$. Therefore $\sigma_{w}$ is idempotent on $\operatorname{Hyp}_{G N_{\varphi}}(V)$, a contradiction.

## 4. Elements of Infinite Order

In this section, we will characterize the set of all elements in $\operatorname{Hyp}_{G N_{\varphi}}(V)$ which have infinite order where $V=\operatorname{Mod}\{(x y) z \approx x(y z), x y \approx y x\}$. Let $O(\sigma)$ denote the order of the generalized hypersubstitution $\sigma \in \operatorname{Hyp}_{G N_{\varphi}}(V)$.

Theorem 4.1. Let $V$ be a variety of semigroups and $\langle\sigma\rangle_{{ }_{G N}}$ be the cyclic subsemigroup generated by $\sigma$. Then following are equivalent:
(i) $\operatorname{Mod}\{(x y) z \approx x(y z), x y \approx y x\} \subseteq V$.
(ii) $\left\{\sigma \mid \sigma \in H^{H y p_{G N_{\varphi}}}(V)\right.$ and the order of $\sigma$ is infinite $\}=H y p_{G N_{\varphi}}(V) \backslash\left(A_{1} \cup A_{2} \cup\right.$ $A_{3} \cup A_{4}$ ) where
$A_{1}=P_{G}(2) \cup E_{x_{1}}^{G} \cup E_{x_{2}}^{G} \cup G \cup\left\{\sigma_{i d}\right\} \cup\left\{\sigma_{f\left(x_{2}, x_{1}\right)}\right\}$
$A_{2}=\left\{\sigma \mid \sigma \in \operatorname{Hyp}_{G N_{\varphi}}(V) \cap\left(T_{1} \cup\left\{\sigma_{v} \mid v \in W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)\right.\right.\right.$ where leftmost( v$)$
$\left.=x_{1}\right\} \backslash \sigma_{x_{1}} \cup \sigma_{f\left(x_{1}, s\right)}$ where $s \in W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)$ and $\langle\sigma\rangle_{\circ_{G N}} \cap\left\{\sigma_{x_{1} u} \mid u \in W_{2}(X)\right\} \neq$
Ø) $\}$
$A_{3}=\left\{\sigma \mid \sigma \in \operatorname{Hyp}_{G N_{\varphi}}(V) \cap\left(T_{2} \cup\left\{\sigma_{v} \mid v \in W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)\right.\right.\right.$ where rightmost( v$)$ $\left.=x_{2}\right\} \backslash \sigma_{x_{2}} \cup \sigma_{f\left(s, x_{2}\right)}$ where $s \in W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)$ and $\langle\sigma\rangle_{O_{G N}} \cap\left\{\sigma_{u x_{2}} \mid u \in W_{2}(X)\right\} \neq$ $\emptyset)\}$.

Proof. Let $x_{i} \in W_{(2)}(X)$ where $i>2$ and $l(t)$ denote the length of $t$ where $t \in$ $W_{(2)}(X)$. Let $\varphi$ be an arbitrary choice function.
(i) $\Rightarrow$ (ii)

Let $\operatorname{Mod}\{(x y) z \approx x(y z), x y \approx y x\} \subseteq V$. We will show that $\left\{\sigma \mid \sigma \in H y p_{G N_{\varphi}}(V)\right.$ and the order of $\sigma$ is infinite $\}=\operatorname{Hyp}_{G N_{\varphi}}(V) \backslash\left(A_{1} \cup A_{2} \cup A_{3}\right)$. Let $\sigma_{w}$ has infinite order on $\operatorname{Hyp}_{G N_{\varphi}}(V)$. Since $A_{1}$ is set of all idempotent on $\operatorname{Hyp}_{G N_{\varphi}}(V)$, i.e., all elements of $A_{1}$ has order 1. So $\sigma_{w} \notin A_{1}$. Assume that $\sigma_{w} \in A_{2}\left(\sigma_{w} \in A_{3}\right)$, then there exists a word $u \in W_{2}(X)\left(s \in W_{2}(X)\right)$ such that $\sigma_{x_{1} u} \in\langle\sigma\rangle_{0_{G N}}\left(\sigma_{s x_{2}} \in\right.$ $\left.\langle\sigma\rangle_{\mathrm{o}_{G N}}\right)$. We get $\sigma_{x_{1} u}=\sigma_{w}^{m}$ for each $m \in \mathbb{N}\left(\sigma_{s x_{2}}=\sigma_{w}^{n}\right.$ for each $\left.n \in \mathbb{N}\right)$ and $O\left(\sigma_{x_{1} u}\right)=1\left(O\left(\sigma_{s x_{2}}\right)=1\right)$, so $O\left(\sigma_{w}^{m}\right)=1\left(O\left(\sigma_{w}^{n}\right)=1\right)$, i.e., $\sigma_{w}^{m}$ is idempotent on $H y p_{G N_{\varphi}}(V)$, contradicts to $O\left(\sigma_{w}^{m}\right)=\infty$. Thus $\sigma_{w} \notin\left(A_{1} \cup A_{2} \cup A_{3}\right)$. Hence $\sigma_{w} \in \operatorname{Hyp}_{G N_{\varphi}}(V) \backslash\left(A_{1} \cup A_{2} \cup A_{3}\right)$.
(ii) $\Rightarrow$ (i)

Let $\left\{\sigma \mid \sigma \in \operatorname{Hyp}_{G N_{\varphi}}(V)\right.$ and the order of $\sigma$ is infinite $\}=\operatorname{Hyp}_{G N_{\varphi}}(V) \backslash\left(A_{1} \cup\right.$ $\left.A_{2} \cup A_{3} \cup A_{4}\right)$.

Assume that $\operatorname{Mod}\{(x y) z \approx x(y z), x y \approx y x\} \nsubseteq V$. Then there exists $x^{k} \approx x^{n} \in$ $I d V$ with $1 \leq k \leq n \in \mathbb{N}$. We consider into two cases:

Case 1: We set $m=n-k$ and $w=f\left(f\left(\ldots f\left(x_{1}, x_{2}\right), \ldots, x_{2}\right), x_{2}\right)$. Clearly, $\sigma_{w} \notin\left(A_{1} \cup A_{2} \cup A_{3}\right)$. It is easy to see that the length of $\sigma_{w}$ is $k m+1$ and the length of $\left(\sigma_{w} \circ_{G} \sigma_{w}\right)$ is $(k m)^{2}+1$. In fact, from $x^{k} \approx x^{n} \in I d V$ it follows that $x^{a} \approx x^{a+b m} \in I d V$ for all $a \geq k$ and $b \geq 1$ where $a, b \in \mathbb{N}$. Then we have $x^{k m} \approx x^{k m+\left(k^{2} m-k\right) m}=x^{k m+k^{2} m^{2}-k m}=x^{(k m)^{2}}$. Hence $\sigma_{w}(f) \approx x_{1} x_{2}^{k m} \approx$ $x_{1} x_{2}^{(k m)^{2}} \approx\left(\sigma_{w} \circ_{G} \sigma_{w}\right)(f)$.

Case 2: We set $m=n-k$ and $w=f\left(f\left(\ldots f\left(x_{1}, f\left(x_{2}, x_{i}\right)\right), \ldots, x_{i}\right), x_{i}\right)$. Clearly, $\sigma_{w} \notin\left(A_{1} \cup A_{2} \cup A_{3}\right)$. It is easy to see that the length of $\sigma_{w}$ is km and the length of $\left(\sigma_{w} \circ_{G} \sigma_{w}\right)$ is $k m(k m+2)$. In fact, from $x^{k} \approx x^{n} \in I d V$ it follows that $x^{a} \approx x^{a+b m} \in I d V$ for all $a \geq k$ and $b \geq 1$ where $a, b \in \mathbb{N}$. Then we have $x^{k m} \approx x^{k m+\left(k^{2} m+k\right) m}=x^{k m+k^{2} m^{2}+k m}=x^{\overline{(k m})^{2}+2 k m}=x^{k m(k m+2)}$. Hence $\sigma_{w}(f) \approx x_{1} x_{2} x_{m}^{k m} \approx x_{1} x_{2} x_{m}^{k m(k m+2)} \approx\left(\sigma_{w} \circ_{G} \sigma_{w}\right)(f)$.

From all cases, we have $\left(\sigma_{w} \circ_{G} \sigma_{w}\right) \sim_{V G} \sigma_{w}$. And from (ii), $\left(\sigma_{w} \circ_{G N} \sigma_{w}\right) \sim_{V G}$ $\left(\sigma_{w} \circ_{G} \sigma_{w}\right)$. So $\left(\sigma_{w} \circ_{G N} \sigma_{w}\right) \sim_{V G}\left(\sigma_{w} \circ_{G} \sigma_{w}\right) \sim_{V G} \sigma_{w}$ it follows $\sigma_{w} \circ_{G N} \sigma_{w}=\sigma_{w}$. Therefore $\sigma_{w}$ is idempotent on $\operatorname{Hyp}_{G N_{\varphi}}(V)$, a contradiction.

Acknowledgements. The corresponding author was supported by Chiang Mai University, Chiang Mai 50200, Thailand.

## References

[1] K. Denecke, K. Mahdavi, The Order of Normal Form Hypersubstitutions of Type (2), Discussiones Mathematicae General Algebra and Applications, 20(2000), 183-192.
[2] K. Denecke, Sh. L. Wismath, Hyperidentities and clones, Gordon and Breach Sci. Publ., Amsterdam-Singapore(2000).
[3] S. Leeratanavalee, K. Denecke, Generalized Hypersubstitutions and Strongly Solid Varieties, In General and Applications, Proc. of " 59 th Workshop on General Algebra ", "15th Conference for Young Algebraists Potsdam 2000", Shaker Verlag(2000), 135145.
[4] S. Leeratanavalee, S. Phatchat, Pre-Strongly Solid and Left-Edge (Right-Edge)Strongly Solid Varieties of Semigroups, International Journal of Algebra, 1(5)(2007), 205-226.
[5] J. Płonka, Proper and Inner Hypersubstitutions of Varieties, In proceedings of the International Conference : Summer School on General Algebra and Ordered Set 1994, Pałacky University Olomouc (1994), 106-115.
[6] W. Puninagool, S. Leeratanavalee, The Order of Generalized Hypersubstitutions of Type $\tau=(2)$, International Journal of Mathematics and Mathematical Science, Vol. 2008, Article ID 263541, 8 pages,doi:10.1155/2008/263541.


[^0]:    * Corresponding Author.

    Received September 28, 2012; accepted April 15, 2013.
    2010 Mathematics Subject Classification: 08A40, 20M07.
    Key words and phrases: Order, normal form generalized hypersubstitution, idempotent element.

