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Abstract. In 2000, K. Denecke and K. Mahdavi showed that there are many idempotent

elements in HypNφ(V ) the set of normal form hypersubstitutions of type τ = (2) which

are not idempotent elements in Hyp(2) the set of all hypersubstitutions of type τ =

(2). They considered in which varieties, idempotent elements of Hyp(2) are idempotent

elements of HypNφ(V ). In this paper, we study the similar problems on the set of all

generalized hypersubstitutions of type τ = (2) and the set of all normal form generalized

hypersubstitutions of type τ = (2) and determine the order of normal form generalized

hypersubstitutions of type τ = (2).

1. Introduction

The order of generalized hypersubstitutions of type τ = (2) was studied by W.
Puninagool and S. Leeratanavalee [6]. In this paper, we used the order of generalized
hypersubstitutions of type τ = (2) as a tool to characterize the order of normal form
generalized hypersubstitutions of type τ = (2).

A generalized hypersubstitution of type τ = (ni)i∈I is a mapping σ which maps
each ni-ary operation symbol to the set Wτ (X) of all terms of type τ built up by
operation symbols from {fi|i ∈ I} where fi is ni-ary and variables from a countably
infinite alphabet X := {x1, x2, x3, ...} which dose not necessarily preserve the arity.
We denote the set of all generalized hypersubstitutions of type τ by HypG(τ). To
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define a binary operation on HypG(τ), we define at first the concept of generalized
superposition of terms Sm : Wτ (X)m+1 −→ Wτ (X) by the following steps:

(i) If t = xj , 1 ≤ j ≤ m, then Sm(xj , t1, ..., tm) := tj .

(ii) If t = xj ,m < j ∈ N, then Sm(xj , t1, ..., tm) := xj .

(iii) If t = fi(s1, ..., sni), then
Sm(t, t1, ..., tm) := fi(S

m(s1, t1, ..., tm), ..., Sm(sni , t1, ..., tm)).

We extend a generalized hypersubstitution σ to a mapping σ̂ : Wτ (X) −→
Wτ (X) inductively defined as follows:

(i) σ̂[x] := x ∈ X,

(ii) σ̂[fi(t1, ..., tni)] := Sni(σ(fi), σ̂[t1], ..., σ̂[tni ]), for any ni-ary operation symbol
fi, supposed that σ̂[tj ], 1 ≤ j ≤ ni are already defined.

Then we define a binary operation ◦G on HypG(τ) by σ1 ◦G σ2 := σ̂1 ◦ σ2

where ◦ denotes the usual composition of mappings and σ1, σ2 ∈ HypG(τ). Let σid

be the hypersubstitution which maps each ni-ary operation symbol fi to the term
fi(x1, ..., xni).

In [3], S. Leeratanavalee and K. Denecke proved that: For arbitrary terms
t, t1, ..., tn ∈ Wτ (X) and for arbitrary generalized hypersubstitutions σ, σ1, σ2 we
have

(i) Sn(σ[t], σ[t1], ..., σ[tn]) = σ̂[Sn(t, t1, ..., tn)],

(ii) (σ̂1 ◦ σ2)̂ = σ̂1 ◦ σ̂2.

It turns out that HypG(τ) = (HypG(τ); ◦G, σid) is a monoid where σid is the
identity element and the set of all hypersubstitutions of type τ forms a submonoid
of HypG(τ).

For more details on generalized hypersubstitutions see [3]. In this paper, we
consider the type τ = (2) with the binary operation symbol, say f . Let Wx1 denote
the set of all words using only the letter x1, and dually for Wx2 . For s ∈ W(2)(X),
we denote :

σs := the generalized hypersubstitution which maps the binary operation f
to the term s,

leftmost(s) := the first variable (from the left) that occurs in s,
rightmost(s) := the last variable (from the right) that occurs in s,
WG

(2)({x1}) := {s ∈ W(2)(X)|x1 ∈ var(s), x2 /∈ var(s)},

WG
(2)({x2}) := {s ∈ W(2)(X)|x2 ∈ var(s), x1 /∈ var(s)},

WG := {t ∈ W(2)(X)|t /∈ X,x1, x2 ∈ var(t)},
G := {σs ∈ HypG(2)|s ∈ W(2)(X)\X,x1, x2 /∈ var(s)},
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PG(2) := {σxi ∈ HypG(2)|i ∈ N, xi ∈ X},
EG

x1
:= {σf(x1,s) ∈ HypG(2)|s ∈ W(2)(X), x2 /∈ var(s)},

EG
x2

:= {σf(s,x2) ∈ HypG(2)|s ∈ W(2)(X), x1 /∈ var(s)},
T1 := {σs ∈ HypG(2)|s ∈ WG

(2)({x1}) and leftmost(s) = xm} where m > 2,

T2 := {σs ∈ HypG(2)|s ∈ WG
(2)({x2}) and rightmost(s) = xm} where m > 2.

In [6], W. Puninagool and S. Leeratanavalee proved that the following state-
ments hold.

(i) Let σt be a generalized hypersubstitution of type τ = (2). Then σt is idem-
potent if and only if σ̂[t] = t.

(ii) PG(2)∪EG
x1
∪EG

x2
∪G∪{σid} is the set of all idempotent elements in HypG(2).

(iii) T1 ∪ T2 ∪ {σf(x2,x1)} is the set of all elements has order 2 in HypG(2).

(iv) If σ ∈ HypG(2) \ (PG(2)∪EG
x1

∪EG
x2

∪G∪{σid}∪T1 ∪T2 ∪{σf(x2,x1)}), then
σn ̸= σn+1 for all n ∈ N with n ≥ 1 (i.e. σ has infinite order).

(v) If σ ∈ HypG(2) \ (PG(2)∪EG
x1

∪EG
x2

∪G∪{σid}∪T1 ∪T2 ∪{σf(x2,x1)}), then
the length of the word (σ ◦h σ)(f) is greater than the length of σ(t).

2. Normal Form Generalized Hypersubstitutions

The concept of normal form hypersubstitutions was introduced by J. P lonka in
1994 [5]. In [4], S. Leeratanavalee and K. Denecke generalized the concept of normal
form hypersubstitutions to normal form generalized hypersubstitutions. We recall
first the definition of V -generalized equivalent.

Definition 2.1. Let V be a variety of type τ . Two generalized hypersubstitu-
tions σ1 and σ2 of type τ are called V -generalized equivalent if σ1(fi) ≈ σ2(fi) are
identities in V for all i ∈ I. In this case we write σ1 ∼V G σ2.

Clearly, the relation ∼V G is an equivalence relation on HypG(τ) and has the
following properties:

Proposition 2.2.([4]) Let V be a variety of type τ and let σ1, σ2 ∈ HypG(τ). Then
the following are equivalent.

(i) σ1 ∼V G σ2.

(ii) For all t ∈ Wτ (X) the equation σ̂1[t] ≈ σ̂2[t] is an identity in V .

In general, the relation ∼V G is not a congruence relation on HypG(τ). Let V
be a variety of type τ and IdV be the set of identities satisfied in the variety V . If
s ≈ t is an identity and for any σ ∈ HypG(τ), σ̂[s] ≈ σ̂[t] ∈ IdV then s ≈ t is called
a strong hyperidentity. A variety V is called strongly solid if every identity in V is
satisfied as a strong hyperidentity. For a strongly solid variety V the relation ∼V G

is a congruence relation on HypG(τ) and the factor monoid HypG(τ)/∼V G
exists.

In the arbitrary case we form also HypG(2)/∼V G
and consider a choice function
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φ : HypG(2)/∼V G
→ HypG(2), with φ([σid]∼V G

) = σid

which selects from each equivalence class exactly one element. Then we obtain the
set HypGNφ(V ) := φ(HypG(2)/∼V G) of all normal form generalized hypersubstitu-
tions with respect to ∼V G and φ.

On the set HypGNφ(V ) we define a binary operation

◦GN : HypGNφ(V ) ×HypGNφ(V ) → HypGNφ(V )

by σ1 ◦GN σ2 := φ(σ1 ◦G σ2). This mapping is well-defined, but in general not
associative.

For example, we consider the variety V = Mod{(xy)z ≈ x(yz), xyuv ≈ xuyv,
x3 ≈ x}. Let f be our binary operation symbol and x1x2 abbreviates f(x1, x2). So
we can construct the set W(2)(X)/IdV . These are some elements in W(2)(X)/IdV :
[x1]IdV , [x2]IdV , [xm]IdV , [x1xm]IdV , [xmx1]IdV , [x2xm]IdV , [xmx2]IdV , [x1x1]IdV ,
[x2x2]IdV , [x1x2]IdV , [x2x1]IdV , [xmxk]IdV , [xmxkxn]IdV , [xmx1xn]IdV , [xmx2xn]IdV ,
[xmxnx1]IdV , [xmx1x1]IdV , [xmx2x1]IdV , [xmxmx2]IdV , [xmx1x2]IdV ,
where m, k, n > 2.

So we get some corresponding elements in HypGNφ(V ) : σx1 , σx2 , σxm , σx1xm ,
σxmx1 , σx2xm , σxmx2 , σx1x1 , σx2x2 , σx1x2 , σx2x1 , σxmxk

, σxmxkxn , σxmx1xn , σxmx2xn ,
σxmxnx1 , σxmx1x1 , σxmx2x1 , σxmxmx2 , σxmx1x2 , σxmx2x2 , σx1xnxm , σx1x1xm , σx1x2xm ,
σx1xmx1

, σx1x2x1
, σx1xmx2

, σx1x1x2
, σx1x2x2

, σx2xmxn
, where m, k, n > 2. Since

σxmx1 , σx1x2x2 , σx1x1 ∈ HypGNφ(V ) we consider

(σxmx1 ◦GN σx1x2x2) ◦GN σx1x1 = σxmx1 ◦GN σx1x1 = σxmx1 ,

σxmx1 ◦GN (σx1x2x2 ◦GN σx1x1) = σxmx1 ◦GN σx1 = σx1 .

So (HypGNφ
(V ); ◦GN , σid) is not a monoid.

We call this structure a groupoid of normal form generalized hypersubstitutions.
Next, we consider, how to characterize the idempotent elements of HypGNφ(V )
where V is a variety of semigroups.

Proposition 2.3. Let V be a variety of semigroups and let

φ : HypG(2)/∼V G → HypG(2).

be a choice function. Then

(i) σ ∈ HypGNφ(V ) is an idempotent element iff σ ◦G σ ∼V G σ.

(ii) σx2x1 ◦GN σx2x1 = σx1x2 if σx2x1 ∈ HypGNφ(V ),
σxmx1 ◦GN σxmx1 = σxmxm if σxmx1 ∈ HypGNφ(V ) where m > 2,
σx2xm ◦GN σx2xm = σxmxm if σx2xm ∈ HypGNφ(V ) where m > 2.
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Proof. (i) If σ is an idempotent of HypGNφ(V ), then σ ◦GN σ = σ ∼V G (σ ◦G σ).
Conversely, we assume that σ ∼V G (σ ◦G σ). Because of σ ∈ HypGNφ(V ), so
σ ◦GN σ = σ.
(ii) Since (σx2x1 ◦GN σx2x1) ∼V G (σx2x1 ◦G σx2x1) = σx1x2 ∈ HypGNφ(V ). Thus
σx2x1 ◦GN σx2x1 = σx1x2 , (σxmx1 ◦GN σxmx1) ∼V G (σxmx1 ◦G σxmx1) = σxmxm ∈
HypGNφ(V ). Thus σxmx1 ◦GN σxmx1 = σxmxm and (σx2xm ◦GN σx2xm) ∼V G

(σx2xm ◦G σx2xm) = σxmxm ∈ HypGNφ(V ). Thus σx2xm ◦GN σx2xm = σxmxm .
2

3. Idempotents in HypGNφ(V )

In general, if σ is an idempotent of HypG(2) and σ ∈ HypGNφ(V ), then it is
also an idempotent in HypGNφ(V ) for any variety V of semigroups and any choice
function φ. But if σ is an idempotent in HypGNφ(V ), then it is not necessarily
be idempotent in HypG(2). As an example, let V = Mod{(xy)z ≈ x(yz), xyuv ≈
xuyv, x3 ≈ x}. We consider

σxmx1x2 ◦GN σxmx1x2 = σxmx1x2 ,

σxmx1x2 ◦G σxmx1x2 = σxmxmxmx1x2 .

We get σxmx1x2 is idempotents in HypGNφ(V ) which is not idempotents in
HypG(2).

All idempotent elements of HypGNφ(V ) are {σx1 , σx2 , σx1x1 , σx1x2 , σx2x2 , σx1x1x2 ,
σx1x2x2 , σx1x2x2x1 , σx1x1x2x1 , σx1x1x2x2 , σx2x1x2x2 , σx2x1x1x2 , σx1x1x2x2x1 , σx2x1x1x2x2}∪
{σt|t ∈ [s] where [s] ∈ {[xi1

k1
xi2
k2
...x

ij
kj

], [x1x
i1
k1
xi2
k2
...x

ij
kj

], [xi1
k1
xi2
k2
...x

i2j−1

k2j−1
x2],

[xi1
k1
xi2
k2
...x

i2j−1

k2j−1
x1x2], [xi1

k1
xi2
k2
...x

ij
kj
x2x2], [x1x1x

i1
k1
xi2
k2
...x

ij
kj

], [x1x2x
i1
k1
xi2
k2
...x

i2j−1

k2j−1
],

[x1x
i1
k1
xi2
k2
...x

ij
kj
x1], [x1x

i1
k1
xi2
k2
...x

i2j−1

k2j−1
x2], [x2x

i1
k1
xi2
k2
...x

ij
kj
x2], [xi1

k1
xi2
k2
...x

i2j−1

k2j−1
x1x1x2],

[x1x2x2x
i1
k1
xi2
k2
...x

ij
kj

], [x1x1x
i1
k1
xi2
k2
...x

ij
kj
x1], [x1x2x

i1
k1
xi2
k2
...x

ij
kj
x2], [x1x1x

i1
k1
xi2
k2
...x

i2j−1

k2j−1
x2],

[x2x2x
i1
k1
xi2
k2
...x

i2j−1

k2j−1
x2], [xi1

k1
xi2
k2
...x

ij
kj
x1x1x2x2], [x1x1x2x2x

i1
k1
xi2
k2
...x

ij
kj

],

[x1x2x2x
i1
k1
xi2
k2
...x

ij
kj
x1], [x1x1x2x

i1
k1
xi2
k2
...x

i2j−1

k2j−1
x1], [x1x1x2x

i1
k1
xi2
k2
...x

ij
kj
x2],

[x2x1x2x
i1
k1
xi2
k2
...x

i2j−1

k2j−1
x2], [x2x1x1x

i1
k1
xi2
k2
...x

ij
kj
x2], [xmx1x1x2x2x

i1
k1
xi2
k2
...x

ij
kj

],

[x1x1x2x2x
i1
k1
xi2
k2
...x

ij
kj
x1], [x2x1x1x2x

i1
k1
xi2
k2
...x

ij
kj
x2], [xmx1x2x

i1
k1
xi2
k2
...x

i2j
k2j

]} where j ≥
1, kj ≥ 3, ij ≤ 2 ; km ̸= kn for m ̸= n and m ≥ 3}.

Now we consider which varieties at most the idempotents of HypG(2) are idem-
potent of HypGNφ(V ).

Theorem 3.1. For a variety V of semigroups the following are equivalent:

(i) Mod{(xy)z ≈ x(yz), xy ≈ yx} ⊆ V .

(ii) {σ|σ ∈ HypGNφ(V ) and σ ◦GN σ = σ} = {σ|σ ∈ HypG(2) and σ ◦G σ =
σ} ∩HypGNφ(V ) for each choice function φ.
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Proof. Let xi ∈ W(2)(X) where i > 2 and l(t) denote the length of t where t ∈
W(2)(X). Let φ be an arbitrary choice function.

(i) ⇒ (ii)
Let Mod{(xy)z ≈ x(yz), xy ≈ yx} ⊆ V . It is clear that {σ|σ ∈ HypG(2) and

σ ◦G σ = σ}∩HypGNφ(V ) ⊆ {σ|σ ∈ HypGNφ(V ) and σ ◦GN σ = σ} for each choice
function φ.

Conversely, let σw ∈ {σ|σ ∈ HypGNφ(V ) and σ ◦GN σ = σ} and σw is not idem-
potent in HypG(2). Since yx ≈ xy, xis ≈ x1s and txi ≈ tx2 ( where s ∈ WG

(2)({x1}),

t ∈ WG
(2)({x2}) ) are identity in V , so we choose xy, x1s, tx2 are respresentatives

of its classes in HypGNφ(V ). Then yx, xis, txi /∈ HypGNφ(V ). Since σw is not
idempotent in HypG(2) and σw ̸= σyx, σxis, σtxi , so σw has infinite order.

Since σw has infinite order, so l(σw) ̸= l(σw ◦G σw). We get σw ≈ (σw ◦G
σw) /∈ IdMod{(xy)z ≈ x(yz), xy ≈ yx}. But σw is idempotent on HypGNφ(V ),
so l(σw) = l(σw ◦GN σw) = l(φ(σw ◦G σw)), i.e. , σw ≈ (σw ◦G σw) ∈ IdV , a
contradiction. So IdV ⊆ IdMod{(xy)z ≈ x(yz), xy ≈ yx}.

(ii) ⇒ (i)
Let {σ|σ ∈ HypGNφ(V ) and σ ◦GN σ = σ} = {σ|σ ∈ HypG(2) and σ ◦G σ =

σ} ∩HypGNφ(V ) for each choice function φ.
Assume that Mod{(xy)z ≈ x(yz), xy ≈ yx} * V . Then there exists xk ≈

xn ∈ IdV with 1 ≤ k ≤ n ∈ N. Next, we will construct an idempotent element of
HypGNφ(V ) which is not in PG(2) ∪ EG

x1
∪ EG

x2
∪ G ∪ {σid}. We consider into six

cases:

Case 1 : We set m = n − k and w = f(f(x1, x1), u) where u ∈ Wx1 . Clearly,
σw /∈ PG(2) ∪ EG

x1
∪ EG

x2
∪ G ∪ {σid}. It is easy to see that the length of σw is

3km and the length of (σw ◦G σw) is (3km)2. In fact, from xk ≈ xn ∈ IdV it
follows that xa ≈ xa+bm ∈ IdV for all a ≥ k and b ≥ 1 where a, b ∈ N. Then
we have x3km ≈ x3km+(9k2m−3k)m = x3km+9k2m2−3km = x9k2m2

= x(3km)2 . Hence
σw(f) ≈ x3km ≈ x(3km)2 ≈ (σw ◦G σw)(f).

Case 2 : We set m = n − k and w = f(f(f(...f(x1, xi), ...), xi), xi). Clearly, σw /∈
PG(2) ∪ EG

x1
∪ EG

x2
∪ G ∪ {σid}. It is easy to see that the length of σw is km + 1

and the length of (σw ◦G σw) is (km)2 + 1. In fact, from xk ≈ xn ∈ IdV it follows
that xa ≈ xa+bm ∈ IdV for all a ≥ k and b ≥ 1 where a, b ∈ N. Then we have
xkm ≈ xkm+(k2m−k)m = xkm+k2m2−km = xk2m2

= x(km)2 . Hence σw(f) ≈ xkm ≈
x(km)2 ≈ (σw ◦G σw)(f).

Case 3 : From xk ≈ xn ∈ IdV implies xn
1x

r
i ≈ xk

1x
s
i ∈ IdV . We set m = n − k,

t = r−s and w = f(f(x1, x1), u) where u ∈ WG
(2)({x1}). Clearly, σw /∈ PG(2)∪EG

x1
∪

EG
x2

∪G ∪ {σid}. It is easy to see that the length of σw is 2km + st and the length
of (σw ◦G σw) is (2km)2 + st(2km + 1). In fact, from xn

1x
r
i ≈ xk

1x
s
i it follows that

xa
1x

c
i ≈ xa+bm

1 xc+dt
i ∈ IdV for all a ≥ k, b ≥ 1 c ≥ s and d ≥ 1 where a, b, c, d ∈ N.

The we have x2km
1 ≈ x

2km+(4k2m−2k)m
1 = x2km+4k2m2−2km

1 = x4k2m2

1 = x
(2km)2

1

and xst
i ≈ x

st+(2kms)t
i = xst+2kmst

i = x
st(2km+1)
i . Hence σw(f) ≈ x2km

1 xst
i ≈
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x
(2km)2

1 x
st(2km+1)
i ≈ (σw ◦G σw)(f).

Case 4 : We set m = n− k and w = f(u, f(x2, x2)) where u ∈ Wx2 .

Case 5 : We set m = n− k and w = f(xi, f(xi, ...f(xi, x2)...)).

Case 6 : From xk ≈ xn ∈ IdV implies xr
ix

n
2 ≈ xs

ix
k
2 ∈ IdV . We set m = n − k,

t = r − s and w = f(u, f(x2, x2)) where u ∈ WG
(2)({x2}).

The proof of Case 4, 5, 6 is similar to Case 1, 2, 3 respectively.
From all cases, we have (σw ◦G σw) ∼V G σw. And from (ii), (σw ◦GN σw) ∼V G

(σw◦Gσw). So (σw◦GNσw) ∼V G (σw◦Gσw) ∼V G σw it follows that σw◦GNσw = σw.
Therefore σw is idempotent on HypGNφ(V ), a contradiction. 2

4. Elements of Infinite Order

In this section, we will characterize the set of all elements in HypGNφ(V ) which
have infinite order where V = Mod{(xy)z ≈ x(yz), xy ≈ yx}. Let O(σ) denote the
order of the generalized hypersubstitution σ ∈ HypGNφ(V ).

Theorem 4.1. Let V be a variety of semigroups and ⟨σ⟩◦GN
be the cyclic subsemi-

group generated by σ. Then following are equivalent:

(i) Mod{(xy)z ≈ x(yz), xy ≈ yx} ⊆ V .

(ii) {σ|σ ∈ HypGNφ(V ) and the order of σ is infinite} = HypGNφ(V )\(A1 ∪A2 ∪
A3 ∪A4) where
A1 = PG(2) ∪ EG

x1
∪ EG

x2
∪G ∪ {σid} ∪ {σf(x2,x1)}

A2 = {σ | σ ∈ HypGNφ(V ) ∩ (T1 ∪ {σv | v ∈ WG
(2)({x1}) where leftmost(v)

= x1}\σx1∪σf(x1,s) where s ∈ WG
(2)({x1}) and ⟨σ⟩◦GN

∩{σx1u | u ∈ W2(X)} ≠

∅)}
A3 = {σ | σ ∈ HypGNφ

(V ) ∩ (T2 ∪ {σv | v ∈ WG
(2)({x2}) where rightmost(v)

= x2}\σx2∪σf(s,x2) where s ∈ WG
(2)({x2}) and ⟨σ⟩◦GN

∩{σux2 | u ∈ W2(X)} ≠

∅)}.

Proof. Let xi ∈ W(2)(X) where i > 2 and l(t) denote the length of t where t ∈
W(2)(X). Let φ be an arbitrary choice function.

(i)⇒(ii)
Let Mod{(xy)z ≈ x(yz), xy ≈ yx} ⊆ V . We will show that {σ|σ ∈ HypGNφ(V )

and the order of σ is infinite} = HypGNφ(V )\(A1 ∪ A2 ∪ A3). Let σw has infinite
order on HypGNφ(V ). Since A1 is set of all idempotent on HypGNφ(V ) , i.e., all
elements of A1 has order 1. So σw /∈ A1. Assume that σw ∈ A2 (σw ∈ A3), then
there exists a word u ∈ W2(X) (s ∈ W2(X)) such that σx1u ∈ ⟨σ⟩◦GN

(σsx2 ∈
⟨σ⟩◦GN ). We get σx1u = σm

w for each m ∈ N (σsx2 = σn
w for each n ∈ N) and

O(σx1u) = 1 (O(σsx2) = 1), so O(σm
w ) = 1 (O(σn

w) = 1), i.e., σm
w is idempotent

on HypGNφ(V ), contradicts to O(σm
w ) = ∞. Thus σw /∈ (A1 ∪ A2 ∪ A3). Hence

σw ∈ HypGNφ(V )\(A1 ∪A2 ∪A3).
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(ii)⇒(i)

Let {σ|σ ∈ HypGNφ(V ) and the order of σ is infinite} = HypGNφ(V )\(A1 ∪
A2 ∪A3 ∪A4).

Assume that Mod{(xy)z ≈ x(yz), xy ≈ yx} * V . Then there exists xk ≈ xn ∈
IdV with 1 ≤ k ≤ n ∈ N. We consider into two cases:

Case 1 : We set m = n − k and w = f(f(...f(x1, x2), ..., x2), x2). Clearly,
σw /∈ (A1 ∪ A2 ∪ A3). It is easy to see that the length of σw is km + 1 and
the length of (σw ◦G σw) is (km)2 + 1. In fact, from xk ≈ xn ∈ IdV it follows
that xa ≈ xa+bm ∈ IdV for all a ≥ k and b ≥ 1 where a, b ∈ N. Then we
have xkm ≈ xkm+(k2m−k)m = xkm+k2m2−km = x(km)2 . Hence σw(f) ≈ x1x

km
2 ≈

x1x
(km)2

2 ≈ (σw ◦G σw)(f).

Case 2 : We set m = n− k and w = f(f(...f(x1, f(x2, xi)), ..., xi), xi). Clearly,
σw /∈ (A1 ∪ A2 ∪ A3). It is easy to see that the length of σw is km and the
length of (σw ◦G σw) is km(km + 2). In fact, from xk ≈ xn ∈ IdV it follows
that xa ≈ xa+bm ∈ IdV for all a ≥ k and b ≥ 1 where a, b ∈ N. Then we
have xkm ≈ xkm+(k2m+k)m = xkm+k2m2+km = x(km)2+2km = xkm(km+2). Hence
σw(f) ≈ x1x2x

km
m ≈ x1x2x

km(km+2)
m ≈ (σw ◦G σw)(f).

From all cases, we have (σw ◦G σw) ∼V G σw. And from (ii), (σw ◦GN σw) ∼V G

(σw ◦G σw). So (σw ◦GN σw) ∼V G (σw ◦G σw) ∼V G σw it follows σw ◦GN σw = σw.
Therefore σw is idempotent on HypGNφ(V ), a contradiction. 2
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