On Regular Generalized b-Continuous Map in Topological Space

Kulandaivelu Mariappa*
Department of Mathematics, King College of Technology, Namakkal-637 020, India
e-mail: kmarichand@yahoo.co.in
Subramaniam Sekar
Department of Mathematics, Government Arts College, Salem - 636 007, India
e-mail: sekar_nitt@rediffmail.com

Abstract. In this paper, we introduce a new class of regular generalized b-continuous map and study some of their properties as well as inter relationship with other continuous maps.

1. Introduction

Continuous map was studied for different types of closed sets by various researchers for past many years. In 1996, Andrijevic introduced new type called b-open sets. A.A.Omari and M.S.M. Noorani were introduced and studied b-continuous map and b-closed map.

The aim of this paper is to continue the study of regular generalized b-continuous map, regular generalized b-closed map have been introduced and studied their relations with various generalized closed maps. Throughout this paper (X, τ) and (Y, τ) represents the non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned.

2. Preliminaries

Definition 2.1. Let a subset A of a topological space (X, τ) is called
(1) a pre-open set [13] if $A \subseteq \operatorname{int}(\operatorname{cl}(A))$.

* Corresponding Author.

Received December 23, 2012; accepted June 28, 2013
2010 Mathematics Subject Classification: 54C05, 54C08, 54C10.
Key words and phrases: rgb-continuous map, b-closed map and $g b$-closed map.
(2) a semi-open set[8] if $A \subseteq \operatorname{cl}(\operatorname{int}(A))$.
(3) a α-open set [14] if $A \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$.
(4) a b-open set [3] if $A \subseteq \operatorname{cl}(\operatorname{int}(A)) \cup \operatorname{int}(c l(A))$.
(5) a generalized closed set (briefly g-closed) [8] if $\operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
(6) a generalized α closed set (briefly $g \alpha$-closed) [10] if $\alpha c l(A) \subseteq U$ whenever $A \subseteq U$ and U is α open in X.
(7) a generalized b-closed set (briefly $g b$-closed) [1] if $b c l(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
(8) a generalized semi-closed set (briefly $g s$-closed) [4] if $\operatorname{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
(9) a semi generalized closed set (briefly sg-closed) [5] if $\operatorname{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.
(10) a generalized αb-closed set (briefly gab-closed) [15] if $b c l(A) \subseteq U$ whenever $A \subseteq U$ and U is α-open in X.
(11) a generalized pre regular closed set (briefly gpr-closed) [6] if $\operatorname{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
(12) a semi generalized b - closed set (briefly sgb- closed) [7] if $b c l(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.
(13) a regular generalized b-closed set (briefly rgb-closed set)[12] if $b c l(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

3. Regular Generalized b-Continuous Maps

In this section we introduce regular generalized b-continuous map and investigate some of their properties.

Definition 3.1. Let X and Y be topological spaces. A map $f:(X, \tau) \rightarrow(Y, \tau)$ is said to be regular generalized b - continuous map if the inverse image of every open set in Y is rgb-open in X.

Theorem 3.2. If a map $f:(X, \tau) \rightarrow(Y, \sigma)$ from a topological space X into a topological space Y is continuous, then it is rgb-continuous but not conversely.
Proof. Let V be an open set in Y. Since f is continuous, then $f^{-1}(V)$ is open in X. As every open set is $r g b$-open, $f^{-1}(V)$ is $r g b$-open in X. Therefore f is rgb-continuous.
Example 3.3. Let $X=Y=\{a, b, c\}$ with $\tau=\{X, \phi,\{a\},\{b\},\{a, b\}\}$ and $\sigma=$ $\{Y, \phi,\{a\},\{a, c\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=a, f(b)=b$,
$f(c)=c$, then f is $r g b$-continuous but not continuously as the inverse image of an open set $\{a, c\}$ in Y is $\{b, c\}$ which is not open set in X.

Theorem 3.4. Let X and Y be topological spaces. If a map $f:(X, \tau) \rightarrow(Y, \sigma)$ is b-continuous, then it is rgb-continouus but not conversely.
Proof. Let us assume that $f:(X, \tau) \rightarrow(Y, \sigma)$ is b-continuous. Let V be an open set in Y, Since f is b-continuous then $f^{-1}(V)$ is b-open. Hence every b-open is $r g b$-open in X. Therefore f is $r g b$-continuous.
The converse of above theorem need not be true as seen from the following example.
Example 3.5. Let $X=Y=\{a, b, c\}$ with $\tau=\{X, \phi,\{b\},\{c\},\{a, c\},\{b, c\}\}$ and $\sigma=\{Y, \phi,\{a\},\{a, b\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=a, f(b)=b$, $f(c)=a$, then f is $r g b$-continuous but not b-continuously as the inverse image of an open set $\{a, b\}$ in Y is $\{a, b\}$ which is not b-open set in X.

Theorem 3.6. Let X and Y be topological spaces. If a map $f:(X, \tau) \rightarrow(Y, \sigma)$ is α-continuous then it is rgb-continouus but not conversely.
Proof. Let us assume that $f:(X, \tau) \rightarrow(Y, \sigma)$ is α-continuous. Let V be an open set in Y, Since f is α-continuous then $f^{-1}(V)$ is α-open. Hence every α-open is $r g b$-open in X. Therefore f is $r g b$-continuous.
The converse of above theorem need not be true as seen from the following example.
Example 3.7. Let $X=Y=\{a, b, c\}$ with $\tau=\{X, \phi,\{b\},\{c\},\{b, c\}\}$ and $\sigma=$ $\{Y, \varphi,\{c\},\{b, c\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=c, f(b)=b$, $f(c)=a$, then f is $r g b$-continuous but not α-continuously as the inverse image of an open set $\{b, c\}$ in Y is $\{a, b\}$ which is not α-open set in X.

Theorem 3.8. Let X and Y be topological spaces. If a map $f:(X, \tau) \rightarrow(Y, \sigma)$ is semi continuous, then it is rgb-continuous but not conversely.

Proof. Let us assume that $f:(X, \tau) \rightarrow(Y, \sigma)$ is semi continuous. Let V be an open set in Y, Since f is semi continuous then $f^{-1}(V)$ is semi open. Hence every semi open is $r g b$-open in X. Therefore f is $r g b$-continuous.
The converse of above theorem need not be true as seen from the following example.
Example 3.9. Let $X=Y=\{a, b, c\}$ with $\tau=\{X, \phi,\{b\},\{c\},\{a, c\},\{b, c\}\}$ and $\sigma=\{Y, \phi,\{c\},\{a, c\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=a, f(b)=c$, $f(c)=b$, then f is $r g b$-continuous but not semi-continuously as the inverse image of an open set $\{c\}$ in Y is $\{b\}$ which is not semi-open set in X.

Theorem 3.10. Let X and Y be topological spaces. If a map $f:(X, \tau) \rightarrow(Y, \sigma)$ is pre continuous, then it is rgb-continuous but not conversely.
Proof. Let us assume that $f:(X, \tau) \rightarrow(Y, \sigma)$ is pre continuous. Let V be an open set in Y, Since f is pre continuous, then $f^{-1}(V)$ is pre open. Hence every pre open is $r g b$-open in X. Therefore f is $r g b$-continuous.
The converse of above theorem need not be true as seen from the following example.

Example 3.11. Let $X=Y=\{a, b, c\}$ with $\tau=\{X, \phi,\{b\},\{c\},\{b, c\}\}$ and $\sigma=$ $\{Y, \phi,\{a, c\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=c, f(b)=a, f(c)=b$, then f is $r g b$-continuous but not pre-continuously as the inverse image of an open set $\{a, c\}$ in Y is $\{a, b\}$ which is not semi-open set in X.
Theorem 3.12. Let X and Y be topological spaces. If a map $f:(X, \tau) \rightarrow(Y, \sigma)$ is ga continuous, then it is rgb-continuous but not conversely
Proof. Let us assume that $f:(X, \tau) \rightarrow(Y, \sigma)$ is $g \alpha$ continuous. Let V be an open set in Y, Since f is $g \alpha$ continuous then $f^{-1}(V)$ is $g \alpha$-open. Hence every $g \alpha$-open is $r g b$-open in X. Therefore f is $r g b$-continuous.
The converse of above theorem need not be true as seen from the following example.
Example 3.13. Let $X=Y=\{a, b, c\}$ with $\tau=\{X, \phi,\{a\},\{a, b\}\}$ and $\sigma=$ $\{Y, \phi,\{a\},\{b\},\{a, b\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=c, f(b)=b$, $f(c)=c$, then f is $g \alpha$-continuous but not rgb-continuously as the inverse image of an open set $\{a, b\}$ in Y is $\{b, c\}$ which is not $g \alpha$-open set in X.
Theorem 3.14. Let X and Y be topological spaces. If a map $f:(X, \tau) \rightarrow(Y, \sigma)$ is gpr continuous then it is rgb-continuous but not conversely
Proof. Let us assume that $f:(X, \tau) \rightarrow(Y, \sigma)$ is $g p r$ continuous. Let V be an open set in Y, Since f is $g p r$ continuous then $f^{-1}(V)$ is $g p r$ open. Hence every $g p r$ open is $r g b$-open in X. Therefore f is $r g b$-continuous
The converse of above theorem need not be true as seen from the following example.
Example 3.15. Let $X=Y=\{a, b, c\}$ with $\tau=\{X, \phi,\{b\},\{c\},\{a, b\},\{b, c\}\}$ and $\sigma=\{Y, \phi,\{c\},\{a, c\},\{b, c\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=c$, $f(b)=b, f(c)=a$, then f is rgb-continuous but not gpr-continuously as the inverse image of an open set $\{a, c\}$ in Y is $\{a, c\}$ which is not gpr-open set in X.
Theorem 3.16. Let X and Y be topological spaces. If a map $f:(X, \tau) \rightarrow(Y, \sigma)$ is rgb continuous, then it is gb-continuous but not conversely.
Proof. Let us assume that $f:(X, \tau) \rightarrow(Y, \sigma)$ is rgb continuous. Let V be an open set in Y, since f is $r g b$ continuous then $f^{-1}(V)$ is $r g b$ open. Hence every $r g b$ open is $g b$-open in X. Therefore f is $g b$-continuous.
The converse of above theorem need not be true as seen from the following example.
Example 3.17. Let $X=Y=\{a, b, c\}$ with $\tau=\{X, \phi,\{b\},\{c\},\{b, c\}\}$ and $\sigma=$ $\{Y, \phi,\{a\},\{a, b\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=b, f(b)=c$, $f(c)=a$, then f is $g b$-continuous but not $r g b$-continuously as the inverse image of an open set $\{a, b\}$ in Y is $\{a, c\}$ is not $r g b$-open set in X.
Theorem 3.18. Let X and Y be topological spaces. If a map $f:(X, \tau) \rightarrow(Y, \sigma)$ is rgb continuous, then it is gsp-continuous but not conversely .
Proof. Let us assume that $f:(X, \tau) \rightarrow(Y, \sigma)$ is $r g b$ continuous. Let V be an open set in Y, Since f is $r g b$ continuous then $f^{-1}(V)$ is $r g b$ open. Hence every $r g b$ open is $g s p$-open in X. Therefore f is $g s p$-continuous.
The converse of above theorem need not be true as seen from the following example.

Example 3.19. Let $X=Y=\{a, b, c\}$ with $\tau=\{X, \phi,\{a\},\{b\},\{a, b\}\}$ and $\sigma=$ $\{Y, \phi,\{a\},\{a, b\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=c, f(b)=b$, $f(c)=a$, then f is $r g b$-continuous but not $g s p$-continuously as the inverse image of an open set $\{a, b\}$ in Y is $\{b, c\}$ which is not $r g b$-open set in X.
Theorem 3.20. Let X and Y be topological spaces. If a map $f:(X, \tau) \rightarrow(Y, \sigma)$ is rgb continuous then it is gab-continuous but not conversely
Proof. Let us assume that $f:(X, \tau) \rightarrow(Y, \sigma)$ is rgb continuous. Let V be an open set in Y, Since f is $r g b$ continuous then $f^{-1}(V)$ is $r g b$ open. Hence every $r g b$ open is $g \alpha b$ open in X. Therefore f is $g \alpha b$-continuous.
The converse of above theorem need not be true as seen from the following example.
Example 3.21. Let $X=Y=\{a, b, c\}$ with $\tau=\{X, \phi,\{a\},\{b\},\{a, b\}\}$ and $\sigma=$ $\{Y, \phi,\{a\},\{a, b\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=c, f(b)=a$, $f(c)=b$, then f is $r g b$-continuous but not $g \alpha b$-continuously as the inverse image of an open set $\{a, b\}$ in Y is $\{b, c\}$ which is not $r g b$-open set in X.
Theorem 3.22. Let X and Y be topological spaces. If a map $f:(X, \tau) \rightarrow(Y, \sigma)$ is sgb continuous then it is rgb-continuous but not conversely
Proof. Let us assume that $f:(X, \tau) \rightarrow(Y, \sigma)$ is $s g b$ continuous. Let V be an open set in Y, Since f is $s g b$ continuous then $f^{-1}(V)$ is $s g b$ open. Hence every $s g b$ open is $r g b$ open in X. Therefore f is $r g b$-continuous.
The converse of above theorem need not be true as seen from the following example.
Example 3.23. Let $X=Y=\{a, b, c\}$ with $\tau=\{X, \phi,\{a\},\{a, b\},\{a, c\}\}$ and $\sigma=\{Y, \phi,\{c\},\{a, c\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=c, f(b)=a$, $f(c)=b$, then f is sgb-continuous but not rgb-continuous as the inverse image of an open set $\{a, c\}$ in Y is $\{a, b\}$ is not $s g b$-open set in X.

Remark 3.24. The following examples show that $r g b$ continuous and $r g$ continuous maps are independent.

Example 3.24. (a) Let $X=Y=\{a, b, c\}$ with $\tau=\{X, \phi,\{a\},\{a, b\},\{a, c\}\}$ and $\sigma=\{Y, \phi,\{a, c\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=b, f(b)=c$, $f(c)=a$, then f is $r g$-continuous but not $r g b$-continuous as the inverse image of and $\{a, c\}$ in Y is $\{b, c\}$ is not $r g b$-continuous.
Example 3.24. (b) Let $X=Y=\{a, b, c\}$ with $\tau=\{X, \phi,\{a\},\{c\},\{a, c\}\}$ and $\sigma=\{Y, \phi,\{b, c\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=b, f(b)=c$, $f(c)=a$, then f is $r g b$-continuous but not $r g$-continuous as the inverse image of and $\{b, c\}$ in Y is $\{a, b\}$ is not $r g$-continuous.
Remark 3.25. The following examples show that $r g b$ continuous and $s g$ continuous maps are independent.
Example 3.25. (a) Let $X=Y=\{a, b, c\}$ with $\tau=\{X, \phi,\{b\},\{c\},\{b, c\}\}$ and $\sigma=\{Y, \phi,\{c\},\{a, c\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=c, f(b)=a$,
$f(c)=b$, then f is $s g$-continuous but not $r g b$-continuous as the inverse image of and $\{a, c\}$ in Y is $\{a, c\}$ is not $r g b$-continuous.

Example 3.25. (b) Let $X=Y=\{a, b, c\}$ with $\tau=\{X, \phi,\{a\},\{c\},\{a, c\}\}$ and $\sigma=\{Y, \phi,\{a, c\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=b, f(b)=c$, $f(c)=a$, then f is $r g b$-continuous but not $s g$-continuous as the inverse image of and $\{a, c\}$ in Y is $\{b, c\}$ is not $s g$-continuous.

Remark 3.26. The following examples show that $r g b$ continuous and $g s$ continuous maps are independent.

Example 3.26. (a) Let $X=Y=\{a, b, c\}$ with $\tau=\{X, \phi,\{b\},\{c\},\{b, c\}\}$ and $\sigma=\{Y, \phi,\{c\},\{a, c\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=c, f(b)=b$, $f(c)=a$, then f is $g s$-continuous but not $r g b$-continuous as the inverse image of and $\{a, c\}$ in Y is $\{a, c\}$ is not $r g b$-continuous.

Example 3.26. (b) Let $X=Y=\{a, b, c\}$ with $\tau=\{X, \phi,\{b\},\{c\},\{a, c\},\{b, c\}\}$ and $\sigma=\{Y, \phi,\{c\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=a, f(b)=c$, $f(c)=c$, then f is rgb-continuous but not $g s$-continuous as the inverse image of and $\{b, c\}$ in Y is $\{a, b\}$ is not $g s$-continuous.

4. Applications

Theorem 4.1. If a map $f:(X, \tau) \rightarrow(Y, \sigma)$ then (i) the following are equivalent (a) f is rgb-continous, (b) The inverse image of open set in Y is rgb-open in X.
(ii) If $f:(X, \tau) \rightarrow(Y, \sigma)$ is rgb-continous, then $f\left(b^{*}(A)\right) \subset \operatorname{cl}(f(A))$ for every subset A of X
Proof. (i) Let us assume that $f: X \rightarrow Y$ be $r g b$ - continuous. Let F be open in Y. Then F^{c} is closed in Y. Since f is $r g b$-continous, $f^{-1}\left(F^{c}\right)$ is $r g b$-closed in X. But $f^{-1}\left(F^{c}\right)=X-f^{-1}(F)$. Thus $X-f^{-1}(F)$ is $r g b$-closed in X. So $f^{-1}(F)$ is $r g b$-open in X. Hence $(a) \Longrightarrow(b)$. Conversely, Let us assume that the inverse image of each open set in Y is $r g b$-open in X. Let G be closed in Y. Then G^{c} is open in Y. By assumption $X-f^{-1}(G)$ is open in X. So $f^{-1}(G)$ is $r g b$-closed in X. There fore f is $r g b$-continous. Hence $(b) \Longrightarrow(a)$. We have (a) and (b) are equivalent.
(ii) Let us assume that f is $r g b$-continous. Let A be any subset of X. Then $c l(f(A))$ is closed in Y. Since f is $r g b$-continous, $f^{-1}(c l(f(A)))$ is $r g b$ - closed in X and it contains A. But $b^{*}(A)$ is the intersection of all b^{*} closed sets containing. There fore $b^{*}(A) \subset f^{-1}(c l(f(A)))$. So that $f\left(b^{*}(A)\right) \subset c l(f(A))$.

Theorem 4.2. Pasting Lemma for rgb-continous maps

Let $X=A \cup B$ be a topological space with topology τ and Y be a topological space with σ. Let $f:(A, \tau / A) \rightarrow(Y, \sigma)$ and $g:(B, \tau / B) \rightarrow(Y, \sigma)$ be rgb-continous map such that $f(x)=g(x)$ for every $x \in A \cup B$. Suppose that A and B are rgb-closed sets in X, Then $\alpha:(X, \tau) \rightarrow(Y, \sigma)$ is rgb-continous.

Proof. Let F be any closed set in Y. Clearly $\alpha^{-1}(F)=f^{-1}(F) \cup g^{-1}(F)=C \cup D$, where $C=f^{-1}(F)$ and $D=g^{-1}(F)$. But C is $r g b$ closed in A and A is rgb-closed in X. So C is $r g b$-closed in X. Since we have prove the result, if $B \subseteq A \subseteq X, B$ is $r g b$-closed in A and A is rgb-closed in X, then B is rgb-closed in X. Also $C \cup D$ is $r g b$-closed in X. There fore $\alpha^{-1}(F)$ is $r g b$-closed in X. Hence α is $r g b$-continous.

References

[1] Ahmad Al-Omari and Mohd. Salmi Md. Noorani, On Generalized b-closed sets, Bull. Malays. Math. Sci. Soc(2), 32(1)(2009), 19-30.
[2] D. Andrijevic, Semi-pre open sets, Mat. Vesnik 38(1)(1986), 24-32.
[3] D. Andrijevic, b-open sets, Mat.Vesink, 48(1996), 59-64.
[4] S. P. Arya and T. Nour, Characterizations of s-normal spaces, Indian J. Pure Applied Maths, 21(8)(1990), 717-719.
[5] P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in Topology, Indian J. Math., 29(1987), 376-382.
[6] Y. Gnanambal, On gpr continuous functions in topological spaces, Indian J. Pure Appl. Math., 30(6)(1999), 581-593.
[7] D. Iyappan and N. Nagaveni, On Semi Generalized b-Continuous Maps, Semi Generalized b-Closed maps in Topological Space , Int. Journal of Math. Analysis, 6(26)(2012), 1251-1264.
[8] N. Levine, Generalized closed sets in topology, Tend Circ.,Mat. Palermo, 2(19)(1970), 89-96.
[9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
[10] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α closed Sets and α-generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., $\mathbf{1 5}$ (1994), 51-63.
[11] H. Maki, R. J. Umehara and T. Noiri, Every topological space is pre- $T_{1 / 2}$, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 17(1996), 33-42.
[12] K. Mariappa and S. Sekar, On regular generalized b-closed set, Int. Journal of Math. Analysis., 7(13)(2013), 613-624.
[13] A. S. Mashour, I. A. Hasanein and S. N. EI. Deep, α-continuous and α-open mapping, Acta. Math. Phys. Soc. Egypt, 51(1981).
[14] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
[15] L. Vinayagamoorthi and N. Nagaveni, On Generalized αb-Continuous Maps, On Generalized αb-Closed maps in Topological Space, Int. Journal of Math. Analysis, $\mathbf{6 (1 3) (2 0 1 2) , ~ 6 1 9 - 6 3 1 . ~}$

