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Abstract. In the present investigation we consider Fekete-Szegö problem with complex

parameter µ and also find upper bound of the second Hankel determinant |a2a4 − a2
3| for

functions belonging to a new class Sτ
γ (A,B) using Toeplitz determinants.

1. Introduction and Preliminaries

Let A denote the class of functions of the form

(1.1) f(z) = z +

∞∑
k=2

akz
k

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1} and S denote
the subclass of A that are univalent in U. Further, let P be the family of functions
p(z) ∈ H (class of analytic function in U) satisfying p(0) = 1 and ℜ(p(z)) > 0.

If f, g ∈ H, then the function f is said to be subordinate to g, written as
f(z) ≺ g(z) (z ∈ U), if there exists a Schwarz function w ∈ H with w(0) = 0 and
|w(z)| < 1 (z ∈ U) such that f(z) = g(w(z)).
In particular, if g is univalent in U, then we have the following equivalence:

f(z) ≺ g(z) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

We now introduce the following class of functions.
Definition 1.1. Let 0 5 γ 5 1, τ ∈ C \ {0}. A function f ∈ A is said to be in the

class Sτ
γ (A,B), if

(1.2) 1 +
1

τ

[
(1− γ)

f(z)

z
+ γf ′(z)− 1

]
≺ 1 +Az

1 +Bz
(−1 5 B < A 5 1; z ∈ U),
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which is equivalent to saying that

(1.3)

∣∣∣∣∣ (1− γ) f(z)z + γf ′(z)− 1

τ(A−B)−B[(1− γ) f(z)z + γf ′(z)− 1]

∣∣∣∣∣ < 1.

The class Sτ
γ (A,B) is essentially motivated by Swaminathan [25]. We list few par-

ticular cases of this class discussed in the literature
[1] Sτ

γ (1 − 2β,−1) = P τ
γ (β) for 0 5 β < 1, τ = C \ {0} is discussed recently by

Swaminathan [25].
[2] The class Sτ

γ (1 − 2β,−1) for τ = eiηcosη where −π/2 < η < π/2 is considered
in [11].
[3] The class Sτ

1 (1− 2β,−1) is considered in [3].
[4] The class Sτ

1 (A,B) = Rτ (A,B) is considered in [6].
[5] The class Sτ

1 (A,B) = Rτ
0(A,B) is considered in [1, 2].

For more details about these classes see the corresponding references.
Fekete and Szegö proved a noticeable result that the estimate

(1.4)
∣∣a3 − λa22

∣∣ 5 1 + 2 exp

(
−2λ

1− λ

)
holds for any normalized univalent function f(z) of the form (1.1) in the open unit
disk U and for 0 5 λ 5 1. This inequality is sharp for each λ (see [5] ). The
coefficient functional

(1.5) ϕλ(f) = a3 − λa2
2 =

1

6

(
f ′′′(0)− 3λ

2
[f ′′(0)]

2
)
,

on normalized analytic functions f in the unit disk represents various geometric
quantities, for example, when λ = 1, ϕλ(f) = a3 − λa2

2, becomes Sf (0)/6, where

Sf denote the Schwarzian derivative (f ′′/f ′)
′ −(f ′′/f ′)2/2 of locally univalent func-

tions f in U. In literature, there exists a large number of results about inequalities
for ϕλ(f) corresponding to various subclasses of S. The problem of maximizing
the absolute value of the functional ϕλ(f) is called the Fekete-Szegö problem; see
[5]. In [12], Koepf solved the Fekete-Szegö problem for close-to-convex functions
and the largest real number λ for which ϕλ(f) is maximized by the Koebe function
z/(1 − z)2 is λ = 1/3, and later in [13] (see also [15]), this result was generalized
for functions that are close-to-convex of order β. One can see [1], [16] and [24] for
result concerning to Fekete-Szegö problem for other classes.

In 1976, Noonan and Thomas [19] discussed the qth Hankel determinant of a
locally univalent analytic function f(z) for q = 1 and n = 1 which is defined by

Hq(n) =

∣∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an+2 · · · an+q

· · ·
· · ·

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣
.
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For our present discussion, we consider the Hankel determinant in the case q = 2
and n = 2 i.e. H2(2) = a2a4 − a23. This is popularly known as the second Hankel
determinant of f .

In the present paper we obtain an upper bound to the functional H2(2) for
f(z) ∈ Sτ

γ (A,B). Earlier Janteng et al. [8, 9], Mishra and Gochhayat [17], Mishra
and Kund [18], Bansal [2] and many other author have obtained sharp upper bounds
of H2(2) for different classes of analytic functions. To prove our main results we
need the following Lemma:

Lemma 1.1. ([23]) Let

(1.6) h(z) = 1 +

∞∑
n=1

cnz
n ≺ 1 +

∞∑
n=1

Cnz
n = H(z) (z ∈ U).

If the function H is univalent in U and H(U) is a convex set, then

(1.7) |cn| 5 |C1|.

Lemma 1.2. ([4]) Let a function p ∈ P be given by the series

(1.8) p(z) = 1 + c1z + c2z
2 + c3z

3 + ... (z ∈ U),

then, the sharp estimate

(1.9) |cn| 5 2 (n ∈ N),

holds.
Lemma 1.3. ([10, 14]) Let p ∈ P be given by the power series (1.8), then for any
complex number µ,

(1.10)
∣∣c2 − µc1

2
∣∣ 5 2max {1, |2µ− 1|}

and the result is sharp for the functions given by

(1.11) p(z) =
1 + z2

1− z2
; p(z) =

1 + z

1− z
(z ∈ U).

Lemma 1.4. ([7]) Let a function p ∈ P be given by the power series (1.8), then

(1.12) 2c2 = c21 + x(4− c21)

for some x, |x| 5 1, and

(1.13) 4c3 = c31 + 2(4− c21)c1x− c1(4− c21)x
2 + 2(4− c21)(1− |x|2)z,

for some z, |z| 5 1.
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2. Main Results

We first give the following result related to the coefficient of f(z) ∈ Sτ
γ (A,B).

Theorem 2.1. Let f(z) ∈ A is of the form (1.1). If f(z) belongs to the class
Sτ
γ (A,B), then

(2.1) |an| 5
|τ | (A−B)

[1 + γ(n− 1)]
(n ∈ N\{1}) .

Proof. If f(z) of the form (1.1) belongs to in Sτ
γ (A,B), then by definition

(2.2)

1 +
1

τ

[
(1− γ)

f(z)

z
+ γf ′(z)− 1

]
≺ 1 +Az

1 +Bz
= h(z) (−1 5 B < A 5 1; z ∈ U),

where h(z) is obviously convex univalent in U under the stated conditions on A and
B. Using (1.1) and doing Binomial expansion of (1 +Bz)−1 in (2.2), we have

1 +
1

τ

[
(1− γ)

f(z)

z
+ γf ′(z)− 1

]

= 1 +
∞∑

n=1

(1 + nγ)

τ
an+1z

n ≺ 1 + (A−B)z −B(A−B)z2 + ...(z ∈ U).

Now, by applying Lemma 1.1, we get the desired result. 2

It is easy to derive a sufficient condition for f(z) to be in Sτ
γ (A,B) using standard

techniques (see [22]). Hence we state the following result without proof.

Theorem 2.2. Let f(z) ∈ A. Then a sufficient condition for f(z) to be in Sτ
γ (A,B)

is

(2.3)
∞∑

n=2

[1 + γ(n− 1)] |an| 5
|τ | (A−B)

|B|+ 1
.

In the next two theorems we give the result concerning Fekete-Szegö problem
and upper bound of Hankel determinant for the class Sτ

γ (A,B).

Theorem 2.3. Let a function f(z) be given by (1.1) belongs to the class Sτ
γ (A,B),

where

(2.4) 0 5 γ 5 1, τ ∈ C \ {0}, −1 5 B < A 5 1; z ∈ U,

then for any complex number µ

(2.5) |a3 − µa22| 5
(A−B) |τ |
(1 + 2γ)

max

{
1,

∣∣∣∣∣B +
µτ(A−B)(1 + 2γ)

(1 + γ)
2

∣∣∣∣∣
}
.
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The result is sharp.

Proof. If f(z) ∈ Sτ
γ (A,B), then there exists a Schwarz function w(z) analytic in U

with w(0) = 0 and |w(z)| < 1 in U, such that

(2.6) 1 +
1

τ

[
(1− γ)

f(z)

z
+ γf ′(z)− 1

]
= ϕ(w(z)) (z ∈ U).

where

(2.7) ϕ(z) =
1 +Az

1 +Bz
= 1 + (A−B)z −B(A−B)z2 +B2(A−B)z3 + ....

= 1 +B1z +B2z
2 +B3z

3 + ..... (z ∈ U).

Define the function p1(z) by

(2.8) p1(z) =
1 + w(z)

1− w(z)
= 1 + c1z + c2z

2 + ...(z ∈ U).

Since w(z) is a Schwarz function, we see that ℜp1(z) > 0 and p1(0) = 1. Define the
function h(z) by

(2.9) h(z) = 1 +
1

τ

[
(1− γ)

f(z)

z
+ γf ′(z)− 1

]
= 1 + b1z + b2z

2 + ....(z ∈ U).

In view of the equations (2.6), (2.8) and (2.9), we have

(2.10) h(z) = ϕ

(
p1(z)− 1

p1(z) + 1

)
= ϕ

(
c1z + c2z

2 + c3z
3 + ...

2 + c1z + c2z2 + c3z3 + ...

)

(2.11) = ϕ

(
1

2
c1z +

1

2
(c2 − c21/2)z

2 +
1

2
(c3 − c1c2 + c31/4)z

3 + ...

)

(2.12) = 1 +
B1c1
2

z +

[
B1

2
(c2 − c21/2) +

B2c
2
1

4

]
z2

+

[
B1

2

(
c3 − c1c2 + c31/4

)
+

B2c1
2

(
c2 − c21/2

)
+

B3c
3
1

8

]
z3 + ....

Thus,

(2.13) b1 =
1

2
B1c1; b2 =

1

2
B1(c2 − c21/2) +

1

4
B2c

2
1

and
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(2.14) b3 =
B1

2

(
c3 − c1c2 + c31/4

)
+

B2c1
2

(
c2 − c21/2

)
+

B3c
3
1

8
.

Using (2.7) and (2.9) in (2.13) and (2.14), we obtain

(2.15) a2 =
(A−B)c1τ

2(1 + γ)
; a3 =

τ(A−B)

4(1 + 2γ)

[
2c2 − c21(1 +B)

]
and

(2.16) a4 =
τ(A−B)

8(1 + 3γ)

[
4c3 − 4c1c2(1 +B) + c31(1 +B)2

]
.

Therefore we have

(2.17) a3 − µa2
2 =

(A−B)τ

2(1 + 2γ)

[
c2 − νc1

2
]
,

where

(2.18) ν =

(
1 +B +

µτ(A−B)(1 + 2γ)

(1 + γ)
2

)
.

Our result now follows by an application of Lemma 1.2. Also by the application of
Lemma 1.2 equality in (2.5) is obtained when

(2.19) p1(z) =
1 + z2

1− z2
; p1(z) =

1 + z

1− z

but

(2.20) h(z) = 1 +
1

τ

[
(1− γ)

f(z)

z
+ γf ′(z)− 1

]
= ϕ

(
p1(z)− 1

p1(z) + 1

)
.

Putting value of p1(z) we get the desired results. 2

Theorem 2.4. Let a function f(z) given by (1.1) be in the class Sτ
γ (A,B), where

(2.21) 0 5 γ 5 1, τ ∈ C \ {0}, −1 5 B < A 5 1; z ∈ U,

then

(2.22) |a2a4 − a23| 5
|τ |2(A−B)

(1 + 2γ)
2

2

.
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Proof. Using (2.15) and (2.16), we have

|a2a4−a23| =
|τ |2(A−B)2

16(1 + γ)(1 + 3γ)
|4c1c3−4c21c2(1+B)+c41(1+B)2

− (1 + γ)(1 + 3γ)

(1 + 2γ)2
[4c22 − 4c21c2(1 +B) + c41(1 +B)2]|

= T
∣∣4c1c3 − 4c21c2(1 +B) + c41(1 +B)2 − p[4c22 − 4c21c2(1 +B) + c41(1 +B)2]

∣∣
(2.23) = T

∣∣4c1c3 − 4c21c2(1 +B)(1− p)− 4pc22 + c41(1 +B)2(1− p)
∣∣ .

where

(2.24) T =
|τ |2(A−B)2

16(1 + γ)(1 + 3γ)
and p =

(1 + γ)(1 + 3γ)

(1 + 2γ)2
.

It can be easily verified that for 0 5 γ 5 1 , p ∈
[
8
9 , 1
]
. The above equation

(2.23) is equivalent to

(2.25) |a2a4 − a23| = T |d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1|,

where

(2.26) d1 = 4; d2 = −4(1 +B)(1− p); d3 = −4p ; d4 = (1− p)(1 +B)2.

Since the functions p(z) and p(eiθz) (θ ∈ R) are members of the class P simul-
taneously, we assume without loss of generality that c1 > 0. For convenience of
notation, we take c1 = c (c ∈ [0, 2], see(1.7)). Also, substituting the values of c2
and c3 respectively, from (1.12) and (1.13) in (2.25), we have

|a2a4 − a23| =

T

4
|c4(d1+2d2+d3+4d4)+2xc2(4−c2)(d1+d2+d3)+(4−c2)x2(−d1c

2+d3(4−c2))

+2d1c(4− c2)(1− |x|2)z|

An application of triangle inequality, replacement of |x| by µ and substituting
the values of d1, d2, d3 and d4 from (2.26), we have

|a2a4 − a23| 5
T

4
[4c4(1− p)B2
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+8|B|(1− p)µc2(4− c2) + (4− c2)µ2(4c2 + 4p(4− c2)) + 8c(4− c2)(1− µ2)]

(2.27)
= T [c4(1−p)B2+2c(4−c2)+2µ|B|(1−p)c2(4−c2)+µ2(4−c2)(c2(1−p)−2c+4p)],

(2.28) = F (c, µ)(say),

Next, we assume that the upper bound for (2.28) occurs at an interior point of
the rectangle [0, 2]× [0, 1]. Differentiating F (c, µ) in (2.28) partially with respect to
µ, we have

(2.29)
∂F

∂µ
= T

[
2|B|(1− p)c2(4− c2) + 2µ(4− c2)(c2(1− p)− 2c+ 4p)

]
.

For 0 < µ < 1 and for any fixed c with 0 < c < 2, from (2.29), we observe that
∂F
∂µ > 0. Therefore F (c, µ) is an increasing function of µ, which contradicts our

assumption that the maximum value of F (c, µ) occurs at an interior point of the
rectangle [0, 2]× [0, 1]. Moreover, for fixed c ∈ [0, 2],

(2.30) Max F (c, µ) = F (c, 1) = G(c)(say).

Thus

(2.31) G(c) = T
[
c4(1− p)(B2 − 2|B| − 1) + 4c2(2|B|(1− p) + 1− 2p) + 16p

]
.

Next,

(2.32) G′(c) = 4cT
[
c2(1− p)(B2 − 2|B| − 1) + 2(2|B|(1− p) + 1− 2p)

]
(2.33) = 4cT

[
c2(1− p)(B2 − 2|B| − 1) + 2 {(1− p)[2|B|+ 1]− p}

]
.

SoG′(c) < 0 for 0 < c < 2 and has real critical point at c = 0. AlsoG(c) > G(2).
Therefore, maximum of G(c) occurs at c = 0. Therefore, the upper bound of F (c, µ)
corresponds to µ = 1 and c = 0. Hence,

|a2a4 − a23| 5 16pT =
|τ |2(A−B)2

(1 + 2γ)2
.

This completes the proof of the Theorem. 2
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