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Abstract. In this paper, we shall utilize Nevanlinna value distribution theory to study

the uniqueness problems on entire functions and differential polynomials sharing one value.

Our theorems improve or generalize some results of Zhang and Lin, Chen, Zhang, Lin and

Chen.

1. Introduction and Main Results

Let C denote the complex plane and f(z) be a non-constant meromorphic func-
tion on C. We assume the reader is familiar with the standard notion used in the
Nevanlinna value distribution theory such as the characteristic function T (r, f), the
proximate function m(r, f), the counting function N(r, f) and S(r, f) denotes any
quantity that satisfies the condition S(r, f) = o(T (r, f)) as r → ∞ outside of a
possible exceptional set of finite linear measure.

Let f(z) and g(z) be two non-constant meromorphic functions. Let a be a
finite complex number. We say that f(z), g(z) share the value a CM (counting
multiplicities) if f(z), g(z) have the same a-points with the same multiplicities and
we say that f(z), g(z) share the value a IM (ignoring multiplicities) if we do not
consider the multiplicities. We denote by Em)(a; f) the set of all a− points of f
with multiplicities not greater than m, where an a− point is counted according to
its multiplicity. If for a ∈ C, E∞)(a; f) = E∞)(a; g), it means that f , g share the

value a CM. We denote by Nk)(r,
1

f−a ) (or Nk)(r,
1

f−a )) the counting function for

zeros of f − a with multiplicity ≤ k (ignoring multiplicities), and by N(k(r,
1

f−a )
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(or N (k(r,
1

f−a ) ) the counting function for zeros of f − a with multiplicity ≥ k

(ignoring multiplicities). Moreover we set Nk(r,
1

f−a ) = N(r, 1
f−a ) +N (2(r,

1
f−a ) +

N (3(r,
1

f−a ) + · · ·+N (k(r,
1

f−a ).

For the sake of simplicity we also use the notion m∗ := χµm,

where χµ =

{
0, µ = 0

1, µ ̸= 0.

Recently, corresponding to a famous question of Hayman [5], Fang and Hua [4],
Yang and Hua [11] obtained the following result.

Theorem A: Let f and g be two non-constant entire functions, n ≥ 6 be a positive
integer. If fn(z)f ′(z) and gn(z)g′(z) share 1 CM, then either f(z) = c1e

cz, g(z) =
c2e

−cz, where c1, c2 and c are three constants satisfying (c1c2)
n+1c2 = −1, or

f(z) ≡ tg(z) for a constant t such that tn+1 = 1.

Note that fn(z)f ′(z) = 1
n+1 (f

n+1(z))′. Fang [3] considered k-th derivative
instead of 1-th derivative and proved the following theorems.

Theorem B: Let f and g be two non-constant entire functions, and let n, k be two
positive integers with n > 2k + 4. If (fn(z))(k) and (gn(z))(k) share 1 CM, then
either f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)k(c1c2)
n(nc)2k = 1, or f(z) ≡ tg(z) for a constant t such that tn = 1.

Theorem C: Let f and g be two non-constant entire functions, and let n, k be two
positive integers with n > 2k + 8. If (fn(z)(f(z) − 1))(k) and (gn(z)(g(z) − 1))(k)

share 1 CM, then f(z) ≡ g(z).

Chen, Zhang, Lin and Chen [2] improved Theorems B and C and proved the
following theorems.

Theorem D: Let f and g be two non-constant entire functions, and let n, k and m
be three positive integers. If Em)(1, (f

n)(k)) = Em)(1, (g
n)(k)) and

(i) if m = 1 and n > 4k+6, then either f(z) = c1e
cz, g(z) = c2e

−cz, where c1, c2
and c are three constants satisfying (−1)k(c1c2)

n(nc)2k = 1, or f(z) ≡ tg(z)
for a constant t such that tn = 1; or

(ii) if m = 2 and n > 5k+9
2 , then either f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2

and c are three constants satisfying (−1)k(c1c2)
n(nc)2k = 1, or f(z) ≡ tg(z)

for a constant t such that tn = 1; or

(iii) if m = 3 and n > 2k+4, then either f(z) = c1e
cz, g(z) = c2e

−cz, where c1, c2
and c are three constants satisfying (−1)k(c1c2)

n(nc)2k = 1, or f(z) ≡ tg(z)
for a constant t such that tn = 1.

Theorem E: Let f and g be two non-constant entire functions, and let n, k and m
be three positive integers. If Em)(1, (f

n(f − 1))(k)) = Em)(1, (g
n(g − 1))(k)) and
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(i) if m = 1 and n > 4k + 11, then f(z) ≡ g(z); or

(ii) if m = 2 and n > 5k+16
2 , then f(z) ≡ g(z); or

(iii) if m = 3 and n > 2k + 7, then f(z) ≡ g(z).

Moreover, Zhang and Lin [13] considered some general differential polynomials
such as (fn(z)(fm(z)−1))(k) and (fn(z)(f(z)−1)m)(k). They proved the following
theorems.

Theorem F: Let f and g be two non-constant entire functions, and let n, m and
k be three positive integers with n > 2k +m∗ + 4, and λ, µ be constants such that
|λ| + |µ| ̸= 0. If (fn(z)(µfm(z) + λ))(k) and (gn(z)(µgm(z) + λ))(k) share 1 CM,
then

(i) when λ µ ̸= 0, f ≡ tg, for a constant t such that tn = 1 and tm = 1;

(ii) when λ µ = 0, either f(z) ≡ tg(z), where t is a constant satisfying tn+m∗
=

1, or f(z) = c1e
cz, g(z) = c2e

−cz, where c1, c2 and c are three constants
satisfying (−1)kλ2(c1c2)

n+m∗
[(n + m∗)c]2k = 1 or (−1)kµ2(c1c2)

n+m∗
[(n +

m∗)c]2k = 1.

Theorem G: Let f and g be two non-constant entire functions, and let n,m, k be
three positive integers with n > 2k+m+4. If (fn(z)(f(z)−1)m)(k) and (gn(z)(g(z)−
1)m)(k) share 1 CM, then either f(z) ≡ g(z), or f and g satisfy the algebraic
equation R(f, g) ≡ 0, where R(ω1, ω2) = ωn

1 (ω1 − 1)m − ωn
2 (ω2 − 1)m.

Using the idea of weighted sharing, Liu [6] improved and generalized Theorem
F by proving the following result.

Theorem H: Let f and g be two non-constant meromorphic functions, and let n,
m and k be three positive integers, and λ, µ be two constants such that |λ|+ |µ| ̸= 0.
If El(1, [f

n(z)(µfm(z) + λ)](k)) = El(1, [g
n(z)(µgm(z) + λ)](k)), and one of the

following conditions holds,

(1) l ≥ 2 and n ≥ 3m∗ + 3k + 8;

(2) l = 1 and n ≥ 4m∗ + 5k + 10;

(3) l = 0 and n ≥ 6m∗ + 9k + 14.

Then (i) when λ µ ̸= 0, if m ≥ 2 and δ(∞, f) > 3
n+m , then f ≡ g; If m = 1

and δ(∞, f) > 3
n+1 , then f ≡ g;

(ii) when λ µ = 0, if f ̸= ∞ and g ̸= ∞, then either f(z) ≡ tg(z), where t
is a constant satisfying tn+m∗

= 1, or f(z) = c1e
cz, g(z) = c2e

−cz, where c1,
c2 and c are three constants satisfying (−1)kλ2(c1c2)

n+m∗
[(n + m∗)c]2k = 1 or

(−1)kµ2(c1c2)
n+m∗

[(n+m∗)c]2k = 1.

For more related results, see [1, 7–9].
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Take notice of the conditions “if f ̸= ∞ and g ̸= ∞” in (ii) of Theorem H,
actually f and g are entire functions under the conditions. In this paper, we improve
Theorem F and G in another way. Now we state our main results of the paper.

Theorem 1.1. Let f and g be two non-constant entire functions, let n, m and k
be three positive integers with n > 2k + m∗ + 4, and λ, µ be constants such that
|λ| + |µ| ̸= 0. If E3)(1; (f

n(z)(µfm(z) + λ))(k)) = E3)(1; (g
n(z)(µgm(z) + λ))(k)),

then the conclusions of the Theorem F hold.

Theorem 1.2. Let f and g be two non-constant entire functions, let n, m and
k be three positive integers with n > 5k+3m∗+9

2 , and λ, µ be constants such that

|λ| + |µ| ̸= 0. If E2)(1; (f
n(z)(µfm(z) + λ))(k)) = E2)(1; (g

n(z)(µgm(z) + λ))(k)),
then the conclusions of the Theorem F hold.

Theorem 1.3. Let f and g be two non-constant entire functions, let n, m and k
be three positive integers with n > 4k + 3m∗ + 6, and λ, µ be constants such that
|λ| + |µ| ̸= 0. If E1)(1; (f

n(z)(µfm(z) + λ))(k)) = E1)(1; (g
n(z)(µgm(z) + λ))(k)),

then the conclusions of the Theorem F hold.

Theorem 1.4. Let f and g be two non-constant entire functions, and let n,m, k
be three positive integers with n > 2k +m + 4. If E3)(1; (f

n(z)(f(z) − 1)m)(k)) =

E3)(1; (g
n(z)(g(z)− 1)m)(k)), then the conclusions of the Theorem G hold.

Theorem 1.5. Let f and g be two non-constant entire functions, and let n,m, k

be three positive integers with n > 5k+2m+9+min{m,k+1}
2 . If E2)(1; (f

n(z)(f(z) −
1)m)(k)) = E2)(1; (g

n(z)(g(z) − 1)m)(k)), then the conclusions of the Theorem G
hold.

Theorem 1.6. Let f and g be two non-constant entire functions, and let n,m, k be
three positive integers with n > 4k+m+6+2min{m, k+1}. If E1)(1; (f

n(z)(f(z)−
1)m)(k)) = E1)(1; (g

n(z)(g(z) − 1)m)(k)), then the conclusions of the Theorem G
hold.

Remark 1.1. Theorem 1.1 improves Theorem F, Theorem 1.4 improves Theorem
G.

Remark 1.2. Let µ = 0 and λ = 1 in Theorems 1.1, 1.2 and 1.3, the three theorems
also generalize Theorem D.

Remark 1.3. Let m = 1 in Theorem 1.4, 1.5 and 1.6, the three theorems also
improve and generalize Theorem E. In fact, by Theorem G, if f ̸≡ g, then fn(f −
1) = gn(g − 1). Let h = f

g , we have g = hn−1
hn+1−1 = (h−u)(h−u2)···(h−un−1)

(h−v)(h−v2)···(h−vn) , where

u = exp(2πi/n) and v = exp(2πi/(n+1)). Since g is entire and h is a non-constant
meromorphic function, vj(1 ≤ j ≤ n) are Picard exceptional values of h. This is
impossible. Therefore f ≡ g.
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2. Some Lemmas

Lemma 2.1 ([3]). Let f(z) be a non-constant meromorphic function and let
a0, a1, · · · an( ̸= 0) be finite complex numbers. Then

T (r, anf
n + an−1f

n−1 + · · ·+ a0) = nT (r, f) + S(r, f).

Lemma 2.2 ( [10]). Let f(z) be a non-constant meromorphic function, and let k
be a positive integer. Suppose that f (k) ̸≡ 0, then

N(r,
1

f (k)
) ≤ N(r,

1

f
) + kN(r, f) + S(r, f).

Lemma 2.3 ( [12]). Let f(z) be a non-constant meromorphic function, s, k be two
positive integers. Then

Ns(r,
1

f (k)
) ≤ T (r, f (k))− T (r, f) +Ns+k(r,

1

f
) + S(r, f),

Ns(r,
1

f (k)
) ≤ kN(r, f) +Ns+k(r,

1

f
) + S(r, f).

Lemma 2.4. Let f(z) and g(z) be two non-constant entire functions, let n,m,
and k be three positive integers with n > k + 2 and λ, µ be constants such that
|λ|+ |µ| ̸= 0. Set

F = (fn(z)(µfm(z) + λ))(k), G = (gn(z)(µgm(z) + λ))(k),

F ∗ = fn(z)(µfm(z) + λ), G∗ = gn(z)(µgm(z) + λ).

H = [
F ′′

F ′ − 2F ′

F − 1
]− [

G′′

G′ − 2G′

G− 1
].(2.1)

If E3)(1;F ) = E3)(1;G) and H ̸≡ 0, then

m(r,
1

F
) +m(r,

1

G
) ≤ N(r,

1

F
) +N(r,

1

G
)− 2(n− k − 2)N(r,

1

f
)

−2(n− k − 2)N(r,
1

g
) + S(r, f) + S(r, g).(2.2)

Proof. Since E3)(1;F ) = E3)(1;G), a simple computation shows that H(z0) = 0 if
z0 is a simple zero of F − 1 and G− 1.
As H ̸≡ 0, by the lemma of logarithmic derivatives, we get m(r,H) = S(r, f) +
S(r, g), so

N1)(r,
1

F − 1
) = N1)(r,

1

G− 1
)

≤ N(r,
1

H
) ≤ T (r,H) +O(1)

≤ N(r,H) + S(r, f) + S(r, g).(2.3)
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Since E3)(1;F ) = E3)(1;G), the zeros of F with multiplicities 1, 2 and 3 are not

poles of H. We denote by N0(
1
F ′ ) the counting function of those zeros of F ′ but not

of F (F − 1), (counting multiplicities). N0(r,
1
G′ ) can be defined in the same way.

From (2.1) and (2.3) and the fact that f(z) and g(z) are two non-constant entire
functions, we deduce that

N1)(r,
1

F − 1
) ≤ N (2(r,

1

F
) +N (2(r,

1

G
) +N0(

1

F ′ ) +N0(
1

G′ )

+N (4(r,
1

F − 1
) +N (4(r,

1

G− 1
) + S(r, f) + S(r, g).(2.4)

By the second fundamental theorem, we have

T (r, F ) ≤ N(r,
1

F
) +N(r,

1

F − 1
)−N0(

1

F ′ ) + S(r, F ).(2.5)

T (r,G) ≤ N(r,
1

G
) +N(r,

1

G− 1
)−N0(

1

G′ ) + S(r,G).(2.6)

Note that

N(r,
1

F − 1
)− 1

2
N1)(r,

1

F − 1
) +N (4(r,

1

F − 1
)

≤ 1

2
N(r,

1

F − 1
) ≤ 1

2
T (r, F ) +O(1),(2.7)

and

N(r,
1

G− 1
)− 1

2
N1)(r,

1

G− 1
) +N (4(r,

1

G− 1
)

≤ 1

2
N(r,

1

G− 1
) ≤ 1

2
T (r,G) +O(1).(2.8)

From (2.3) ∼ (2.8) we have

T (r, F ) + T (r,G) ≤ 2(N(r,
1

F
) +N (2(r,

1

F
) +N(r,

1

G
)

+ N (2(r,
1

G
)) + S(r, f) + S(r, g).(2.9)

Note that T (r, F ) = T (r, 1
F ) + S(r, f) and T (r,G) = T (r, 1

G ) + S(r, g). It follows
from (2.9) that

T (r,
1

F
) + T (r,

1

G
) ≤ 2(N(r,

1

F
)− [N(3(r,

1

F
)− 2N (3(r,

1

F
)] +N(r,

1

G
)

−[N(3(r,
1

G
)− 2N (3(r,

1

G
)]) + S(r, f) + S(r, g).(2.10)
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We see that if z0 is a zero of f with multiplicity l, l ≥ 1, then z0 is a zero F
with multiplicity at least 3 since nl − k > (k + 2)l − k ≥ 2, so we get

N(3(r,
1

F
)− 2N (3(r,

1

F
) ≥ (n− k − 2)N(r,

1

f
)(2.11)

and

N(3(r,
1

G
)− 2N (3(r,

1

G
) ≥ (n− k − 2)N(r,

1

g
).(2.12)

Note that m(r, 1
F ) = T (r, 1

F ) − N(r, 1
F ) and m(r, 1

G ) = T (r, 1
G ) − N(r, 1

G ). From
(2.10), (2.11), (2.12) we have (2.2). This completes the proof of Lemma 2.4.

Lemma 2.5. Let f(z) and g(z) be two non-constant entire functions, let n,m,
and k be three positive integers with n > k + 2 and λ, µ be constants such that
|λ|+ |µ| ̸= 0. Let H be defined as (2.1). If E2)(1;F ) = E2)(1;G) and H ̸≡ 0, then

m(r,
1

F
) +m(r,

1

G
) ≤ N(r,

1

F
) +N(r,

1

G
)− 2(n− k − 2)N(r,

1

f
)

−2(n− k − 2)N(r,
1

g
) +

1

2
N(r,

1

F
) +

1

2
N(r,

1

G
) + S(r, f) + S(r, g).(2.13)

Proof. Similar to the proof of Lemma 2.4, we have

N1)(r,
1

F − 1
) ≤ N (2(r,

1

F
) +N (2(r,

1

G
) +N0(

1

F ′ ) +N0(
1

G′ )

+N (3(r,
1

F − 1
) +N (3(r,

1

G− 1
) + S(r, f) + S(r, g).(2.14)

Note that

N(r,
1

F − 1
)− 1

2
N1)(r,

1

F − 1
) +

1

2
N (3(r,

1

F − 1
)

≤ 1

2
N(r,

1

F − 1
) ≤ 1

2
T (r, F ) +O(1),(2.15)

and

N(r,
1

G− 1
)− 1

2
N1)(r,

1

G− 1
) +

1

2
N (3(r,

1

G− 1
)

≤ 1

2
N(r,

1

G− 1
) ≤ 1

2
T (r,G) +O(1).(2.16)

From (2.5), (2.6) and (2.14) ∼ (2.16), we have

T (r, F ) + T (r,G) ≤ 2(N(r,
1

F
) +N (2(r,

1

F
) +N(r,

1

G
) +N (2(r,

1

G
))

+N (3(r,
1

F − 1
) +N (3(r,

1

G− 1
) + S(r, f) + S(r, g).(2.17)
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As

N (3(r,
1

F − 1
) ≤ 1

2
N(r,

F

F ′ ) ≤
1

2
N(r,

F ′

F
) + S(r, f) ≤ 1

2
N(r,

1

F
) + S(r, f),

similarly we have

N (3(r,
1

G− 1
) ≤ 1

2
N(r,

1

G
) + S(r, g).

Using the similar proof of Lemma 2.4 we get (2.13). This completes the proof of
Lemma 2.5.

Lemma 2.6. Let f(z) and g(z) be two non-constant entire functions, let n,m,
and k be three positive integers with n > k + 2 and λ, µ be constants such that
|λ|+ |µ| ̸= 0. Let H be defined as (1). If E1)(1;F ) = E1)(1;G) and H ̸≡ 0, then

m(r,
1

F
) +m(r,

1

G
) ≤ N(r,

1

F
) +N(r,

1

G
)− 2(n− k − 2)N(r,

1

f
)

−2(n− k − 2)N(r,
1

g
) + 2N(r,

1

F
) + 2N(r,

1

G
) + S(r, f) + S(r, g).(2.18)

Proof. Similar to the proof of Lemma 2.4, we have

N1)(r,
1

F − 1
) ≤ N (2(r,

1

F
) +N (2(r,

1

G
) +N0(

1

F ′ ) +N0(
1

G′ )

+N (2(r,
1

F − 1
) +N (2(r,

1

G− 1
) + S(r, f) + S(r, g).(2.19)

Note that

N(r,
1

F − 1
)− 1

2
N1)(r,

1

F − 1
)

≤ 1

2
N(r,

1

F − 1
) ≤ 1

2
T (r, F ) +O(1),(2.20)

and

N(r,
1

G− 1
)− 1

2
N1)(r,

1

G− 1
)

≤ 1

2
N(r,

1

G− 1
) ≤ 1

2
T (r,G) +O(1).(2.21)

From (2.5), (2.6) and (2.19) ∼ (2.21), we have

T (r, F ) + T (r,G) ≤ 2(N(r,
1

F
) +N (2(r,

1

F
) +N(r,

1

G
) +N (2(r,

1

G
)

+ N (2(r,
1

F − 1
) +N (2(r,

1

G− 1
)) + S(r, f) + S(r, g).(2.22)
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Since

N (2(r,
1

F − 1
) ≤ N(r,

F

F ′ ) ≤ N(r,
F ′

F
) + S(r, f) ≤ N(r,

1

F
) + S(r, f).

Similarly we have

N (2(r,
1

G− 1
) ≤ N(r,

1

G
) + S(r, g).

By the similar proof of Lemma 2.4 we get (2.18). This completes the proof of
Lemma 2.6.

Remark 2.1. Suppose that the condition “F = (fn(z)(µfm(z) + λ))(k), G =
(gn(z)(µgm(z) + λ))(k)” is replaced by “F = (fn(z)(f(z) − 1)m)(k), G =
(gn(z)(g(z)− 1)m)(k)” in Lemmas 2.4–2.6, then the conclusions remain valid.

Lemma 2.7. Let f(z) and g(z) be two non-constant entire functions, let n, m and
k be three positive integers with n > 2k +m∗ + 4, and λ, µ be constants such that
|λ| + |µ| ̸= 0. Let F = (fn(z)(µfm(z) + λ))(k), G = (gn(z)(µgm(z) + λ))(k), H be
defined as (2.1). If H ≡ 0, then the conclusions of Theorem F hold.

Proof. As H ≡ 0, Proceeding as in the proof of Theorem 1 in [6], the conclusions
of Theorem F hold, which also completes the proof of Lemma 2.7.

Lemma 2.8. Let f and g be two non-constant entire functions, and let n,m, k
be three positive integers with n > 2k + m + 4. Let F = (fn(z)(f(z) − 1)m,
G = (gn(z)(g(z) − 1)m)(k), H be defined as (1). If H ≡ 0, then the conclusions of
the Theorem G hold.

Proof. As H ≡ 0, Proceeding as in the proof of Theorem 2 in [6], the conclusions
of Theorem G hold, which also completes the proof of Lemma 2.8.

3. Proofs of the Theorems

Proof of Theorem 1.1.
Suppose that F,G, F ∗, G∗ and H are defined as in Lemma 2.4. First by Lemma

2.1 we have

T (r, F ∗) = (n+m∗)T (r, f) + S(r, f).(3.1)

T (r,G∗) = (n+m∗)T (r, g) + S(r, g).(3.2)

Since (F ∗)(k) = F , we have

m(r,
1

F ∗ ) ≤ m(r,
1

F
) + S(r, f).(3.3)

Note that
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m(r,
1

F ∗ ) = T (r,
1

F ∗ )−N(r,
1

F ∗ ).(3.4)

Let H be defined as (2.1). Suppose that H ̸≡ 0, by Lemma 2.4, we have

m(r,
1

F
) +m(r,

1

G
) ≤ N(r,

1

F
) +N(r,

1

G
)− 2(n− k − 2)N(r,

1

f
)

−2(n− k − 2)N(r,
1

g
) + S(r, f) + S(r, g).(3.5)

Lemma 2.2 implies that

N(r,
1

F
) ≤ N(r,

1

F ∗ ) + S(r, f), N(r,
1

G
) ≤ N(r,

1

G∗ ) + S(r, g).(3.6)

It follows From (3.1) ∼ (3.6) that

(n+m∗)(T (r, f) + T (r, g))

≤ N(r,
1

F ∗ )− 2(n− k − 2)N(r,
1

f
) +N(r,

1

G∗ )− 2(n− k − 2)N(r,
1

g
)

+N(r,
1

F
) +N(r,

1

G
) + S(r, f) + S(r, g)

≤ 2(N(r,
1

F ∗ ) +N(r,
1

G∗ )− (n− k − 2)N(r,
1

f
)− (n− k − 2)N(r,

1

g
))

+S(r, f) + S(r, g)

≤ 2[nN(r,
1

f
) + nN(r,

1

g
) +N(r,

1

µfm + λ
) +N(r,

1

µgm + λ
)

−(n− k − 2)N(r,
1

f
)− (n− k − 2)N(r,

1

g
)] + S(r, f) + S(r, g)

≤ 2[N(r,
1

µfm + λ
) +N(r,

1

µgm + λ
) + (k + 2)(N(r,

1

f
) +N(r,

1

g
))]

+S(r, f) + S(r, g)

≤ 2(m∗ + k + 2)(T (r, f) + T (r, g)) + S(r, f) + S(r, g).

We obtain that n ≤ 2k +m∗ + 4, which contradicts n > 2k +m∗ + 4. Therefore,
H ≡ 0. By Lemma 2.7, the conclusions of Theorem F hold. This completes the
proof of Theorem 1.1. 2

Proof of Theorem 1.2.
Let F,G, F ∗, G∗ and H be defined as in Lemma 2.4. Suppose that H ̸≡ 0. By

Lemma 2.5 we have

m(r,
1

F
) +m(r,

1

G
) ≤ N(r,

1

F
) +N(r,

1

G
)− 2(n− k − 2)N(r,

1

f
)− 2(n− k

−2)N(r,
1

g
) +

1

2
N(r,

1

F
) +

1

2
N(r,

1

G
) + S(r, f) + S(r, g).(3.7)
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By Lemma 2.3 with s = 1, together with (3.1) ∼(3.4) and (3.6), we get

(n+m∗)(T (r, f) + T (r, g))

≤ N(r,
1

F ∗ )− 2(n− k − 2)N(r,
1

f
) +N(r,

1

G∗ )− 2(n− k − 2)N(r,
1

g
)

+N(r,
1

F
) +N(r,

1

G
) +

1

2
N(r,

1

F
) +

1

2
N(r,

1

G
) + S(r, f) + S(r, g)

≤ 2(N(r,
1

µfm + λ
) +N(r,

1

µgm + λ
) + (k + 2)(N(r,

1

f
) +N(r,

1

g
)))

+
1

2
(N(r,

1

µfm + λ
) +N(r,

1

µgm + λ
)) +

k + 1

2
N(r,

1

f
)

+
k + 1

2
N(r,

1

g
) + S(r, f) + S(r, g)

≤ [2(k + 2) +
k + 1

2
+

5m∗

2
](T (r, f) + T (r, g)) + S(r, f) + S(r, g).

We obtain that n ≤ 5k+3m∗+9
2 , which contradicts with n > 5k++3m∗+9

2 . Hence
H ≡ 0. By Lemma 2.7, the conclusions of Theorem F hold. This completes the
proof of Theorem 1.2. 2

Proof of Theorem 1.3.
Let F,G, F ∗, G∗ and H be defined as in Lemma 2.4. Suppose that H ̸≡ 0. By

Lemma 2.6, Lemma 2.3 with s = 1, together with (3.1) ∼(3.4) and (3.6), we get

(n+m∗)(T (r, f) + T (r, g))

≤ N(r,
1

F ∗ )− 2(n− k − 2)N(r,
1

f
) +N(r,

1

G∗ )− 2(n− k − 2)N(r,
1

g
)

+N(r,
1

F
) +N(r,

1

G
) + 2N(r,

1

F
) + 2N(r,

1

G
) + S(r, f) + S(r, g)

≤ 2(N(r,
1

F ∗ ) +N(r,
1

G∗ )− (n− k − 2)N(r,
1

f
)− (n− k

−2)N(r,
1

g
)) + 2Nk+1(r,

1

F ∗ ) + 2Nk+1(r,
1

G∗ ) + S(r, f) + S(r, g)

≤ 2(nN(r,
1

f
) + nN(r,

1

g
) +N(r,

1

µfm + λ
) +N(r,

1

µgm + λ
)− (n− k

−2)N(r,
1

f
)− (n− k − 2)N(r,

1

g
)) + 2(k + 1)N(r,

1

f
) + 2(k + 1)N(r,

1

g
)

+2(N(r,
1

µfm + λ
) +N(r,

1

µgm + λ
)) + S(r, f) + S(r, g)

≤ 2(2N(r,
1

µfm + λ
) + 2N(r,

1

µgm + λ
) + (k + 2)(N(r,

1

f
) +N(r,

1

g
)))

+2(k + 1)N(r,
1

f
) + 2(k + 1)N(r,

1

g
) + S(r, f) + S(r, g)

≤ (4k + 4m∗ + 6)(T (r, f) + T (r, g)) + S(r, f) + S(r, g).
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We obtain that n ≤ 4k + 3m∗ + 6, which contradicts n > 4k + 3m∗ + 6. Hence
H ≡ 0. By Lemma 2.7, the conclusions of Theorem F hold. This completes the
proof of Theorem 1.3. 2

Proof of Theorem 1.4.
Let

F = (fn(z)(f(z)− 1)m)(k), G = gn(z)(g(z)− 1)m)(k).

F ∗ = fn(z)(f(z)− 1)m, G∗ = gn(z)(g(z)− 1)m.

Let H be defined as in Lemma 2.5. By Lemma 2.1, we have

T (r, F ∗) = (n+m)T (r, f) + S(r, f).(3.8)

T (r,G∗) = (n+m)T (r, g) + S(r, g).(3.9)

Suppose that H ̸≡ 0. Proceeding as in the proof of Theorem 1.1, we can get a
contradiction. Hence H ≡ 0. By Lemma 2.8, the conclusions of Theorem G hold.
This completes the proof of Theorem 1.4. 2

Proof of Theorem 1.5.
Let

F = (fn(z)(f(z)− 1)m)(k), G = gn(z)(g(z)− 1)m)(k).

F ∗ = fn(z)(f(z)− 1)m, G∗ = gn(z)(g(z)− 1)m.

Let H be defined as in Lemma 2.4. Suppose that H ̸≡ 0. By Lemma 2.3 with s = 1,
we get

(3.10) N(r,
1

F
) ≤ Nk+1(r,

1

F ∗ ) + S(r, f) = Nk+1(r,
1

fn(z)(f(z)− 1)m
) + S(r, f).

Since n > k, if m ≥ k + 1, (3.10) implies

N(r,
1

F
) ≤ (k + 1)N(r,

1

f
) + (k + 1)N(r,

1

f − 1
) + S(r, f)

≤ (k + 1)N(r,
1

f
) + (k + 1)T (r, f) + S(r, f).(3.11)

If m < k + 1, (3.10) implies

N(r,
1

F
) ≤ (k + 1)N(r,

1

f
) +N(r,

1

(f − 1)m
) + S(r, f)

≤ (k + 1)N(r,
1

f
) +mT (r, f) + S(r, f).(3.12)

Combining (3.11) and (3.12) yields

N(r,
1

F
) ≤ (k + 1)N(r,

1

f
) + min{m, k + 1}T (r, f) + S(r, f).(3.13)
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Similarly we have

N(r,
1

G
) ≤ (k + 1)N(r,

1

g
) + min{m, k + 1}T (r, g) + S(r, g).(3.14)

From (3.8), (3.9), (3.13) and (3.14), similar to the proof of Theorem 1.2, we get

(n+m)(T (r, f) + T (r, g))

≤ N(r,
1

F ∗ )− 2(n− k − 2)N(r,
1

f
) +N(r,

1

G∗ )− 2(n− k − 2)N(r,
1

g
) +N(r,

1

F
)

+N(r,
1

G
) +

1

2
N(r,

1

F
) +

1

2
N(r,

1

G
) + S(r, f) + S(r, g)

≤ 5k + 4m+ 9 +min{m, k + 1}
2

(T (r, f) + T (r, g)) + S(r, f) + S(r, g).

From this inequality above we obtain that n ≤ 5k+2m+9+min{m,k+1}
2 , which contra-

dicts n > 5k+2m+9+min{m,k+1}
2 . Hence H ≡ 0. By Lemma 2.8, the conclusions of

Theorem G hold. This completes the proof of Theorem 1.5. 2

Proof of Theorem 1.6.
Let F = (fn(z)(f(z)−1)m)(k), G = gn(z)(g(z)−1)m)(k), F ∗ = fn(z)(f(z)−

1)m, G∗ = gn(z)(g(z)− 1)m.
Let H be defined as in Lemma 2.4. Suppose that H ̸≡ 0. Proceeding as in the

proof of Theorem 1.2, we get

(n+m)(T (r, f) + T (r, g))

≤ N(r,
1

F ∗ )− 2(n− k − 2)N(r,
1

f
) +N(r,

1

G∗ )− 2(n− k − 2)N(r,
1

g
) +N(r,

1

F
)

+N(r,
1

G
) + 2N(r,

1

F
) + 2N(r,

1

G
) + S(r, f) + S(r, g)

≤ 2[N(r,
1

F ∗ ) +N(r,
1

G∗ )− (n− k − 2)N(r,
1

f
)− (n− k − 2)N(r,

1

g
)]

+2Nk+1(r,
1

F ∗ ) + 2Nk+1(r,
1

G∗ ) + S(r, f) + S(r, g)

≤ 2[nN(r,
1

f
) + nN(r,

1

g
) +mN(r,

1

f − 1
) +mN(r,

1

g − 1
)− (n− k − 2)N(r,

1

f
)

−(n− k − 2)N(r,
1

g
)] + 2(k + 1)[N(r,

1

f
) +N(r,

1

g
)]

+2min{m, k + 1}(T (r, f) + T (r, g)) + S(r, f) + S(r, g)

≤ 2(mN(r,
1

f − 1
) +mN(r,

1

g − 1
) + (k + 2)(N(r,

1

f
) +N(r,

1

g
))

+2(k + 1)[N(r,
1

f
) +N(r,

1

g
)] + 2min{m, k + 1}(T (r, f) + T (r, g))

+S(r, f) + S(r, g)

≤ 4k + 2m+ 6 + 2min{m, k + 1}(T (r, f) + T (r, g)) + S(r, f) + S(r, g).
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From this inequality above we obtain that n ≤ 4k+m+6+2min{m, k+1}, which
contradicts n > 4k +m + 6 + 2min{m, k + 1}. Hence H ≡ 0. By Lemma 2.8, the
conclusions of Theorem G hold. This completes the proof of Theorem 1.6. 2

Annex remarks

In this section, we would like to point out a gap that appears in the proof of Theorem
4 of [1]. In [1, P. 1203], on the first line below formula (6.8), the authors said:
“Let z1 be a zero of f−1 of order p1, then z1 is zero of [fn(f−1)](k) of order p1−k.
Therefore from (6.7), we obtain

p1 − k = nq1 + q1 + k,

since z1 is a pole of g of order q1”.
A question arises:

Question: If p1 ≤ k, then z1 is not a zero of [fn(f − 1)](k), and thus not a pole of
g. How to deal with this case?
A similar gap can also be found in the proof of Case 1.2 of Theorem H. Actually,
whether the case (i) of Theorem H holds for meromorphic functions is still an open
problem. The first author [15, Theorems 1.2–1.3] gave a partial answer to it.
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