DOI QR코드

DOI QR Code

A Dual Transcoding Method for Retaining QoS of Video Streaming Services under Restricted Computing Resources

동영상 스트리밍 서비스의 QoS유지를 위한 듀얼 트랜스코딩 기법

  • 오두환 (연세대학교 전기전자공학과) ;
  • 노원우 (연세대학교 전기전자공학부)
  • Received : 2014.03.11
  • Accepted : 2014.06.16
  • Published : 2014.07.31

Abstract

Video transcoding techniques provide an efficient mechanism to make a video content adaptive to the capabilities of a variety of clients. However, it is hard to provide an appropriate quality-of-service(QoS) to the clients owing to heavy workload on transcoding operations. In light of this fact, this paper presents the dual transcoding method in order to guarantee QoS in streaming services by maximizing resource usage in a transcoding server equipped with both CPU and GPU computing units. The CPU and GPU computing units have different architectural features. The proposed method speculates workload of incoming transcoding requests and then schedules the requests either to the CPU or GPU accordingly. From performance evaluation, the proposed dual transcoding method achieved a speedup of 1.84 compared with traditional transcoding approach.

스트리밍 서비스에 사용되는 트랜스코딩 서버는 동시에 다수의 트랜스코딩 요청을 처리한다. 하지만 트랜스코딩 연산의 부하가 높기 때문에 단일 서버가 수용할 수 있는 요청 개수는 제한적일 수밖에 없다. 본 논문에서는 단일 서버의 트랜스코딩 성능을 높이고자 CPU 기반 트랜스코더와 GPU 기반 트랜스코더를 동시에 사용하는 듀얼 트랜스코딩 방법을 제안한다. 듀얼 트랜스코딩 방법은 트랜스코딩 요청을 처리하기 전에 워크로드를 예측하여 해당 요청에 대한 QoS유지가 가능한지 판단한다. QoS유지가 가능하다고 판단되면 CPU 또는 GPU 트랜스코더 중 보다 적합한 타입의 장치에 작업을 할당함으로써 연산 자원의 효율성을 높인다. 성능 평가 결과 듀얼 트랜스코딩 기법은 기존 방식 대비 최대 1.84배의 성능 향상을 이루었다. 결과적으로 단일 서버가 보다 많은 사용자의 요청을 QoS 유지 하에 제공할 수 있게 되었다.

Keywords

References

  1. Jiani, Guo and Laxmi Narayan Bhuyan, "Load Balancing in a Cluster-Based Web Server for Multimedia Applications," IEEE Transactions on Parallel and Distributed Systems, Vol.17, No.11, pp.1321-1334, November, 2006. https://doi.org/10.1109/TPDS.2006.159
  2. C. Sampath Kannangara, Iain. E. Richardson, and A. J. Miller, "Computational Complexity Management of a Real-Time H.264/AVC Encoder," IEEE Transactions on Circuits and Systems for Video Technology, Vol.18, No.9, pp.1191-1200, September, 2008. https://doi.org/10.1109/TCSVT.2008.928881
  3. Recommendation H.264: Advanced Video Coding for Generic Audiovisual Services ITU-T, 2003.
  4. J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T. Stockhammer, and T. Wedi, "Video coding with H.264/AVC: Tools, performance and complexity," IEEE Circuits Syst. Mag., Vol.4, pp.7-28, 2004. https://doi.org/10.1109/MCAS.2004.1286980
  5. Tung-Chien Chen et. al., "Analysis and architecture design of an HDTV720p 30 frames/s H.264/AVC encoder," IEEE T. CIRC. SYST. VID., Vol.16, No.6, pp.673-688, June, 2006. https://doi.org/10.1109/TCSVT.2006.873163
  6. Shenggang Chen et. al., "Mapping of H.264/AVC Encoder on a Hierarchical Chip Multicore DSP Platform", in HPCC'10, pp.465-470, 2010.
  7. Laurent Aimar et. al., x264, [Online]. Available: http://www.videolan.org/developers/x264.html
  8. NVIDIA Corporation, NVIDIA CUDA Programming Guide 4.2, Edition 2012.
  9. Wei-Nien Chen and Hsueh-Ming Hang, "H.264/AVC Motion Estimation Implementation on Compute Unified Device Architecture (CUDA)", in ICME'08, pp.697-700, 2008.
  10. "Video Capture, Encoding, And Streaming in a Multi-GPU System", NVIDIA Technical Brief, 2010.
  11. NVIDIA Corporation, NVIDIA CUDA VIDEO ENCODER LIBRARY, Edition 2010.
  12. B. A. Shirazi, A. R. Hurson, and K. M. Kavi, "Scheduling and Load Balancing in Parallel and Distributed Systems," Wiley-IEEE Computer Society Press, 1995.
  13. H. Zhu, H. Tang, and T. Yang, "Demand-Driven Service Differentiation in Cluster-Based Network Servers," in Proc. IEEE INFOCOM, 2001.
  14. C. Li, G. Peng, K. Gopalan, and T. Chiueh, "Performance Garantees for Cluster-Based Internet Services," in Proc. 23rd Int'l Conf. Distributed Computing Systems (ICDCS'03), May, 2003.
  15. F. Bellard et al., FFmpeg. [Online]. Available: http://www.ffmpeg.org