
Cost Efficient Virtual Machine Brokering in Cloud Computing 219

Cost Efficient Virtual Machine Brokering in Cloud Computing

Dong-Ki Kang†⋅Seong-Hwan Kim†⋅Chan-Hyun Youn††

ABSTRACT

In the cloud computing environment, cloud service users purchase and use the virtualized resources from cloud resource providers on a

pay as you go manner. Typically, there are two billing plans for computing resource allocation adopted by large cloud resource providers

such as Amazon, Gogrid, and Microsoft, on-demand and reserved plans. Reserved Virtual Machine(VM) instance is provided to users

based on the lengthy allocation with the cheaper price than the one of on-demand VM instance which is based on shortly allocation. With

the proper mixture allocation of reserved and on-demand VM corresponding to users’ requests, cloud service providers are able to reduce

the resource allocation cost. To do this, prior researches about VM allocation scheme have been focused on the optimization approach with

the users’ request prediction techniques. However, it is difficult to predict the expected demands exactly because there are various cloud

service users and the their request patterns are heavily fluctuated in reality. Moreover, the previous optimization processing techniques

might require unacceptable huge time so it is hard to apply them to the current cloud computing system. In this paper, we propose the

cloud brokering system with the adaptive VM allocation schemes called A3R(Adaptive 3 Resource allocation schemes) that do not need

any optimization processes and kinds of prediction techniques. By using A3R, the VM instances are allocated to users in response to their

service demands adaptively. We demonstrate that our proposed schemes are able to reduce the resource use cost significantly while

maintaining the acceptable Quality of Service(QoS) of cloud service users through the evaluation results.

Keywords : Cloud Broker, Virtual Machine Allocation, Adaptive Resource Management, Resource Reservation

가격 효율적인 클라우드 가상 자원 중개 기법에 대한 연구

강 동 기
†
⋅김 성 환

†
⋅윤 찬 현

††

요 약

클라우드 컴퓨팅 환경에서, 클라우드 서비스 사용자는 클라우드 자원 제공자로부터 가상화된 컴퓨팅 자원을 사용할 시간만큼 구매하여 할당

받는다. 일반적으로 아마존, 고그리드 및 마이크로소프트와 같은 대형 클라우드 자원 제공자들은 자원 과금 정책을 온디맨드와 예약형 기반 가

상 자원의 두 가지로 구분하여 제공한다. 예약형 기반 가상 자원은 상대적으로 장기간 할당을 가지므로 단위 시간당 자원 사용 비용이 온디맨

드 가상 자원과 비교하여 더 저렴하다. 이러한 과금 정책 특성을 기반으로 클라우드 서비스 사용자의 서비스 요구 사항을 고려하여 적절한 자

원 할당을 수행함으로써 클라우드 서비스 제공자는 자원 할당 비용을 효과적으로 절감할 수 있다. 이를 위해서, 기존의 가상 자원 할당 기법들

은 서비스 사용자의 요구사항 특성을 미리 예측하여 최적의 자원을 할당하는 방법들을 제안하였다. 그러나 실세계에서는 다양한 클라우드 서비

스 사용자가 존재하고 서비스 요구사항이 동적으로 변하기 때문에 정확한 예측을 하기 어려우며, 최적화된 할당을 위한 연산 시간이 추가 오버

헤드가 되어 자원 관리 성능을 떨어뜨릴 수 있다. 이를 해결하기 위해, 본 논문에서는 적응적 자원 할당 기법을 제안하여 요구사항 예측 및 최

적화 기법을 수행하지 않으면서도 서비스 요구사항에 효과적으로 대응하여 자원을 제공할 수 있도록 한다. 실험 결과를 통해 제안된 기법이 자

원 사용 비용을 크게 절감하면서도 클라우드 서비스 사용자의 QoS를 만족함을 보인다.

키워드 : 클라우드 브로커, 가상 머신 할당, 적응적 자원 관리, 자원 예약

1)

※ This research was supported by Next-Generation Information
Computing Development Program through the National Research
Foundation of Korea(NRF) funded by the Ministry of Education,
Science and Technology(2012-0020522).

※ This research also was supported by ‘The Cross-Ministry Giga
KOREA Project’ of The Ministry of Science, ICT and Future Planning,
Korea[GK13P0100, Development of Tele-Experience Service SW
Platform based on Giga Media].
†준 회 원 :한국과학기술원 전기및전자공학과 박사과정
††종신회원:한국과학기술원 전기및전자공학과 교수

Manuscript Received : May 2, 2014
First Revision : June 26, 2014
Accepted : June 27, 2014

* Corresponding Author : Chan-Hyun Youn(chyoun@kaist.ac.kr)

KIPS Tr. Comp. and Comm. Sys.
Vol.3, No.7 pp.219~230 pISSN: 2287-5891 http://dx.doi.org/10.3745/KTCCS.2014.3.7.219

220 정보처리학회논문지/컴퓨터 및 통신 시스템 제3권 제7호(2014. 7)

1. Introduction

Recently, in the emerging cloud computing environment,

physical computing nodes in the datacenter are provided

to the cloud service users as outsourcing virtual resources.

Cloud service users do not need considering any setup

process for the erection and maintenance of computing

resources. The major benefits of cloud computing are

lower resource use cost (for resource installation and

management) and saving resource provisioning time.

Cloud service users just purchase virtualized resources

from the certain cloud resource provider (or service

provider) whenever their job is required to process and,

return the allocated resources to the cloud resource

provider after their job is finished. Typically, most cloud

resource providers such as Amazon EC2 and GoGrid

support three types of resource payment plans to the

cloud service users, i.e., on-demand VM, reserved VM

and spot VM instances [1, 2, 3].

First, on-demand VM(OVM) instance is provided to

users based on the short-term basis whenever they need

to process their jobs. The billing time unit of on-demand

VM instance has not fine-grained granularity, which is

the VM instances are provided to users on a predefined

hourly basis (or daily one) from the cloud resource

provider. In response to the actual processing time of job,

the allocation time of on-demand VM instance is

increased proportionately. The cost of on-demand VM

instance is more expensive than other VM instance types,

so cloud service users prefer to purchase the on-demand

VM instance when they need to process the fluctuated

and unpredictable job demands.

Second, in contrast to the on-demand VM instance,

reserved VM(RVM) instance is allocated to cloud service

users on long-term basis regardless of the actual

processing time of submitted job (i.e. minimum billing

time unit of reserved VM instance is much longer than

the on-demand VM instance, it is commonly from a

month to an year). Cloud resource providers grant the

advantages in view of the resource use cost to cloud

service users which using reserved VM instance since

the constant benefit can be guaranteed quite a while.

Therefore the resource use cost per certain time unit of

the reserved VM instance is much cheaper than the one

of on-demand VM instance.

Finally, spot VM instance is provided to users based

on the dynamic pricing policy in contrast to the cases of

on-demand and reserved VM instance those are based on

the fixed pricing policy [14]. Cloud service users set the

bid price in advance, and the spot VM instance is

allocated to the user if the cost of spot VM instance (in

general, the cost of spot VM instance is cheaper than the

on-demand and even the reserved VM instance) is under

the bid price of the user. The cost of spot VM instance

is adjusted dynamically depending on the demand of

users. When the cost of spot VM instance is more

expensive than the maximum bid price of user, then the

allocated spot VM instance is released from the user

without any notification and it is allocated to the another

user who proposes the higher bid price than the cost of

spot VM instance. That is, the cloud service user uses

the spot VM instance lower resource use price at the

expense of the reliability of job processing.

Consequently, the resource budget can be differentiated

according as the VM instance allocation plans, therefore

the cloud service provider should set up the accurate plan

with the consideration of cloud service users’ request

demand pattern and trend.

In this context, previous studies about VM instance

allocation have been focused on the determination the

number and the ratio of each VM instance type by using

optimization techniques with several prediction methods

[1, 4, 5]. However, there are several problems to be

addressed in them.

First, they have assumed that the demand of cloud

service users obeys the uniform or normal distribution in

their experimental evaluation. However, in the real world,

the mixed demands from cloud service users are not

based on the simple distribution model and they are

represented by the complex and dynamic shape [12]. In

addition, since various cloud service users synthesize

demands, it is difficult to predict the actual demands

exactly in advance; therefore, the evaluation results of

existing researches with simple demand distribution might

be inconsistent with the real statistics.

Second, in optimization approaches such as integer or

linear programming, the process to obtain a solution can

be computationally intensive and it is infeasible to be

applied to the current cloud computing system when the

size of required factors and constraints are large.

In order to solve above problems, in this paper, we

propose the adaptive VM allocation schemes to reduce the

Cost Efficient Virtual Machine Brokering in Cloud Computing 221

Fig. 1. Cloud Brokering System

Product RAM Cores Hourly
Monthly

Prepaid

Annual

Prepaid

X-Small .5GB 0.5 $0.04(1)
$18.13

(0.63)

$181.25

(0.52)

Small 1GB 1 $0.08(1)
$36.25

(0.63)

$362.50

(0.52)

Medium 2GB 2 $0.16(1)
$72.50

(0.63)

$725

(0.52)

Large 4GB 4 $0.32(1)
$145

(0.63)

$1,450

(0.52)

X-Large 8GB 8 $0.64(1)
$290

(0.63)

$2,900

(0.52)

XX-Large 16GB 16 $1.28(1)
$580

(0.63)

$5,800

(0.52)

XXX-Large 24GB 24 $1.92(1)
$870

(0.63)

$8,700

(0.52)

Table 1. GoGrid, pricing policy [3]

resource use cost significantly while guaranteeing the

acceptable QoS of cloud service users without the demand

prediction and optimization techniques. To achieve the

simplicity, we just considered both the on-demand VM

instance and reserved VM Instance with the exception of

the spot VM instance. Proposed schemes are adopted to

the cloud brokering system which interconnects the cloud

service provider and the group which is comprised of

cloud service users who have a common jobs and shared

contents. Through the various experimental results from

our implemented cloud brokering system, we demonstrate

that the proposed schemes are able to correspond to the

uncertainty of the demand effectively and guarantee the

required QoS of users while reducing the resource use

cost significantly.

This paper is organized as follows: In section 2, cloud

brokering system and the related environment are

introduced. The adaptive VM allocation schemes are

presented in section 3. Section 4 describes the experimental

environment, cloud brokering testbed and shows the

evaluation results. Finally, conclusions are discussed in

section 5.

2. Cloud Brokering System and Assumptions

The cloud brokering system between the cloud service

provider and cloud user groups is shown in Figure 1. It

has resource pools to provision on-demand and reserved

VM instances in order to provide the proper VM

instances to cloud service users efficiently. It purchases

reserved and on-demand VM instances responds to user

demands. Both reserved VM instance and on-demand VM

instances are able to be shared by cloud service users

who are in same user group. The user group stands for

the gathering of users who have common jobs and

contents to process. For example, we can take the smart

care scenario in the hospital. If the medical attendant

would like to treat a patient in order to diagnose his

brain tumor in the hospital, the process is performed as a

collaboration among the MRI(Magnetic Resonance Imaging)

medical specialist who takes a photo of the patient’s

brain, the image developer who processes the MRI result

based raw data to construct the 3D brain images and the

brain medical specialist who analyzes the brain status. In

such an this environment, allocated VM instances do not

have to be dedicated to certain users, but rather shared

sequentially by users as many as possible preferably. In

previous environment in which cloud service users each

process their jobs independently, the reserved VM

instance allocation is commonly irrational since the

resource dissipation is occurred due to the fact that the

allocation time of reserved VM instance is much longer

than the required processing time of jobs. However, in

above environment in which the service collaboration is

established among users, the multiple jobs of distributed

users can be aggregated to the common VM instance. In

this case, the reserved VM allocation is a reasonable

approach able to reduce the resource use cost since the

utilization ratio of reserved VM instance reaches to the

enough level.

In order to calculate the utilization of reserved VM

instance depending on the user demands, we denote the

number of cloud service users is , and the probability of

demand occurrence from each user is , then the

probability of that the demand is occurred once at least is

as follows,

222 정보처리학회논문지/컴퓨터 및 통신 시스템 제3권 제7호(2014. 7)

Fig. 2. Adaptive Recycle of on-demand VM instance

 
 

    
    


    

(1)

where  is the probability that the demand is not

occurred at all. As the user number  is increased the

demand occurrence probability is closed to 1. This is

consistent with that the reserved VM instance allocation

is useful to the environment in which multiple cloud

service users share the allocated resource alternatively.

In the table 1, the resource use cost for both of

on-demand VM instance and reserved VM instance in the

representative cloud service provider, GoGrid is shown.

The number in the each blanket represents the normalized

values by the standard of hourly cost. That is to say, if

we assume that the resource hourly use cost for

on-demand VM instance is 1, then the monthly prepaid

cost for reserved VM instance is 0.63, and the annual

prepaid cost is 0.52 in all the resource type. According to

above table, as the duration of reservation is increased,

the resource use cost per time billing unit (e.g., hourly) is

decreased. It is important to choose the proper reservation

type to maximize the benefit and avoid unnecessary

resource dissipation since once the allocated reserved VM

instance can not be released for its quite some billing

time. However, it is difficult to select optimum

reservation plan at all times in practical resource

management, the resource allocation scheme is required

which is efficient even under the failure of the

reservation plan.

3. Adaptive Virtual Machine Allocation Schemes

As described in the earlier section, previous researches

of resource allocation have been focused on the theoretical

optimization approaches for determining the proper ratio

of both the on-demand VM instance and reserved VM

instance in order to guarantee the user’s required QoS

and minimize the resource operation and maintenance cost

of cloud service provider. However, optimization techniques

such as integer or linear programming requires the high

processing complexity and the long processing time, it is

difficult to adapt these approaches to the current cloud

resource management system in practice. Moreover, since

the prediction based on the demand history has to be

performed to do optimization techniques, if the demand of

users is fluctuated and the request pattern has not fixed

shape, then the accurate prediction cannot be achieved.

Finally we might not be available to guarantee the

required QoS from cloud service users. In contrast to the

previous approaches, our proposed adaptive VM allocation

scheme does not require the additional prediction scheme

and is feasible to current cloud computing system since

its processing time is acceptable. To provide against the

resource adjustment failure for demand we propose the

novel scheme solving resource under-provisioning and

over-provisioning. These schemes are called A3R(Adaptive

3 Resource management) and they are described as

follows.

3.1 Adaptive Recycle

In Adaptive Recycle scheme, the running on-demand

VM instance (i.e. is more expensive than reserved VM

instance) is not released immediately after its running job

processing is completed, is continuously maintained until

its original termination time in order to accept additional

requests from other cloud service users. To do this,

on-demand VM instance is stand by in the resource pool

temporarily. Since the surplus time of running on-demand

VM instance is made the best use of another user’s

request the resource dissipation can be reduced. The

structure of Adaptive Recycle process is shown in figure

2. When the request  in which  is a task (or

Cost Efficient Virtual Machine Brokering in Cloud Computing 223

task processing time) and  is a required resource type

from cloud service user is submitted to the cloud

brokering system, the resource pool manager checks

whether the available reserved VM instance exists or not

to process the submitted job. If there are not available

reserved VM instance which is consistent with required

VM instance type, then the manager tries to find another

available VM instance in the recycled VM pool.

If the manager cannot find the available VM instance

even in the recycled VM pool, then newly on-demand

VM instance is generated to process the submitted job.

After the job processing is finished and the complete

message is noticed from the cloud service user to the

cloud broker system, then allocated on-demand VM

instance is not released immediately but added to the list

of recycled VM pool to be reused. Finally, when the

allocation time of recycled VM instance is reached to its

expiration time, then it is released. The more description

is entered into details as follows,

Step 1 : The request description from the cloud service

user includes the required VM instance type, and the job

processing time like as     where  is

the request of the cloud service user ,  is the VM

instance type , and  is the job processing time in

the required resource. First, when the cloud resource pool

manager accepts the request from the cloud service user,

the cloud resource pool manager searches the available

VM instance having resource type among the reserved

VM instance set preferentially. If the cloud resource pool

manager finds the proper VM instance, then it provides

the VM instance to the cloud service user and go step 4.

Otherwise, go step 2.

Step 2 : The cloud resource pool manager searches the

available recycled VM instance consistent with required

resource type  secondly. If the cloud resource pool

manager finds the suitable reserved VM instance, then it

provides the VM instance to the cloud service user and

go step 4. Otherwise, even in recycled VM instance pool

if it cannot find the proper resource, then it should

generate the newly on-demand VM instance which has

the VM resource type  from the cloud service provider.

Go step 3.

Step 3 : The cloud resource pool manager calls for the

on-demand VM instance to the cloud service provider

when there are no idle (with no running job) reserved

VM and recycled VM instances. The generated

on-demand VM instance is inserted to the list of running

on-demand VM instances and provided to the cloud

service user so as to process the  . Now go step 4.

Step 4 : When the request in the running on-demand

VM instance is finished, then the VM instance is

removed from the list of on-demand VM instance and

inserted to the list of recycled VM instance. All the VM

instances in the recycled VM instance pool are not

released immediately but maintained until reaching to

their originally scheduled release time. If the ongoing

request is not finished until the next allocation point of

the recycled VM instance and it is exceed the originally

allocated duration of the VM instance, then the lifetime of

the recycled VM instance would be extended. The

available duration of the waiting VM instance in the list

of recycled VM instance is as follows,

  

 

(2)

where  is the VM instance which is allocated

to process the request of cloud service user ,

 is the remaining time of the VM instance

which processed  ,  is the whole

allocation time of VM instance,   is the

processing time of the  on the resource , and

 is the VM instance generation (or startup)

time of the resource .

That is, as  is increased, the dissipation ratio of

the VM instance is also increased. Therefore, in

traditional schemes, as  is increased, the dissipation

problem of resource becomes more serious. In the case of

traditional schemes, in order to support  requests,  VM

instances are required. That is, in regardless of the actual

size of requests, the VM instance with fixed allocation

time is allocated to cloud service user.

This is a quite unreasonable dissipation. In our

proposed scheme, we can minimize the number of newly

allocated VM instances unnecessarily by making the best

use of the existing VM instances simply as described

earlier. Especially the effectiveness of our scheme is

increased when the size of request tends to be small

piece. If the job processing time exceeds the originally

224 정보처리학회논문지/컴퓨터 및 통신 시스템 제3권 제7호(2014. 7)

Fig. 3. Adaptive Replacement of reserved VM instance

allocation time of VM instance, then the life duration of

VM instance is extended to accomodate the running job

automatically.

In addition, in our scheme we can reduce the VM

instance generation overhead by reducing the number of

newly generated VM instance. Multi requests can be

processed in the single VM instance. In this case, the

processing time is calculated as follows,

 ∈ 
∈ 
_ (3)

∈ 
∈ 
_ (4)

The equation (3) represents the total processing time

of the request set  which requires the identical resource

type  in our scheme, and the equation (4) represents

same value in traditional schemes. In contrast to

traditional scheme in which the total generation delay is

proportional to the number of requests, in our scheme the

total generation delay is occurred just only once.

3.2 Adaptive Replacement

All the VM instances allocated to the cloud service

users have their own VM flavor (i.e. CPU, Memory,

Storage, etc.) type. It is important to purchase the proper

amount of reserved VM instance with the prediction of

user’s demand about each flavor type. Therefore, the

broker should either allocate on-demand VM instance

newly or provision additional reserved VM instance when

the under-provisioning is occurred by the imprecise

prediction of demand. In this case, it is reasonable to

utilize idle reserved VM instances having another flavor

type to accommodate excess demands rather than either

the on-demand VM instance allocation or the additional

provisioning in case the demand fluctuation is temporary.

To solve this problem, we propose Adaptive

Replacement scheme in which, the VM instance with

higher flavor capacity can be allocated to user as a

substitute instance instead of the VM instance having

lower flavor capacity. For example, the flavor capacity of

arbitrary reserved VM instance is  and the other

flavor capacity of arbitrary VM instance is  , if

 ≥ , the VM instance with the capacity can be

substitute for the other VM instance with the capacity

 . In opposite case, the VM instance with  can

be substitute for the VM instance with  .

Figure 3 shows the procedure of the Adaptive Replacment

scheme. As shown in Figure 3, we assume that there are

three prepared resource flavor types such as  ,  ,

 in order to provide suitable resources to users

according to their request types   . If the

average number of resource demand for flavor types  ,

 ,  is 5, 4, and 6, then the provisioning number of

instance for each VM flavor types is also determined 5,

4, and 6, respectively. At the certain epoch, suppose that

the transient number of resource use for VM flavor types

 ,  ,  is 6, 5, and 2, respectively. This means

that the demands for flavor types  ,  exceeds their

originally provisioned number of VM instances. However,

it is not desirable solution to increase the provisioning

number of reserved VM instance since the high resource

demand is not persistent but transient, which is returned

to the average amount of demand. Also, the newly

allocation of on-demand VM instances to support

excessive demands is either an unsuitable alternative due

to the high price of the instance. In this case, by our

proposed Adaptive Replacement scheme, 2 idle VM

instances for flavor type  can be supported to process

excessive demands instead of increasing the provisioning

number of VM instances for flavor types  ,  . This

scheme is allowable since the capacity of VM instance

for flavor type  is larger than VM instances for

flavor types  ,  . To enable the Adaptive Replacement

scheme, we should know the expected number of arrived

requests during from the epoch of VM instance

Cost Efficient Virtual Machine Brokering in Cloud Computing 225

Fig. 4. Adaptive Reposition from on-demand VM to reserved VM instance

insourcing to returning. If the expected number of request

arrival during that period is more than the number of

available VM instances, then idle VM instances are not

available to be aided for other VM instance types. By

using the Adaptive Replacement scheme, we can increase

the utilization of reserved VM instances and cover the

payment for additional resource allocation due to

transitory rise in resource demands.

3.3 Adaptive Reposition

Adaptive Reposition scheme is conducted between

running on-demand VM instance and reserved VM

instance. In this scheme, it is allowable to migrate the

running job process from the on-demand VM instance to

the available reserved VM instance if the job processing

time exceeds the inherent allocation time of on-demand

VM instance. Suppose that the inherent allocation time of

on-demand VM instance is an hour, and the required

processing time of the running job is an hour and 10

minutes, then, the allocation time of the instance has to

be extended to two hours. Consequently, the unnecessary

50 minutes is dissipated due to just 10 minutes that is,

we have to pay double prices of hourly on-demand VM

instance. This is not advisable outcome for us.

To overcome this problem, the job should be processed

on the on-demand VM instance during an hour, and

migrated to the available reserved VM instance after the

inherent release time of on-demand VM instance.

Then the extension of allocation time is not required

and at the same time, the dissipation of the provisioned

reserved VM instance is minimized. We called this

operation request migration.

Actually to do Adaptive Reposition scheme, there are

two necessary conditions. First, the capacity of

destination reserved VM instance is larger than or equal

to the source on-demand VM instance. Second, the

migration of running job has to be conducted before

inherent allocation time of reaching to the end point of

instance allocation time due to the additional time caused

by the processing and communication overhead.

226 정보처리학회논문지/컴퓨터 및 통신 시스템 제3권 제7호(2014. 7)

Components Values

Testbed

pecification

(5 machines)

1 Nova controller

4 Nova compute nodes

(16 core, 2.4Ghz, 16GB RAM)

NIC cards : 1Gbps

S/W Ubuntu 12.04, Java jdk 1.6

VM flavor

types

SMALL (core 1, 1GB RAM)

MEDIUM (core 2, 2GB RAM)

LARGE (core 4, 4GB RAM)

Application
MapChem application

(sdf 100, 200, 400)

Interarrival

time of

request

2, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1(sec)

Schemes

with A3R

without (w/o) A3R - stochastic VM

provisioning [13]

VM instance

price

(RVM)

SMALL - 0.04$/hour(36.25$/month)

MEDIUM - 0.09$/hour(72.50$/month)

LARGE –0.19$/hour(145$/month)

(OVM)

SMALL - 0.36$/hour

MEDIUM - 0.15$/hour

LARGE - 0.32$/hour

Performance

metrics

Request completion time

(queueing + service time)

Resource use cost

Utilization of VM instances

Table 2. Experimental Environment



⌈
 




⌉ ∀∈      ∀∈     

⌈
 




⌉

Figure 4 represents the comparison of procedures of

both the traditional VM allocation scheme and the

proposed Adaptive Reposition scheme. The left side of

figure represents the traditional VM allocation scheme

(e.g. without Adaptive Reposition) in which, running job

is fixed on the on-demand VM instance. Since the job

processing time exceeds the first payment duration the

inherent allocation time of VM instance has to be

extended to twice. Although there is an available reserved

VM instance, the additional allocation of on-demand VM

instance is occurred. That is, the resource use cost is

increased and the utilization of provisioned reserved VM

instance is decreased. The right side of figure 4 shows

the proposed task re-allocation scheme (with Adaptive

Reposition) in which, the running job is migrated from

the on-demand VM instance to the reserved VM

instance. In contrast to the traditional scheme, if the job

processing is not finished and the number of available

reserved VM instance is one at least at the first payment

point, then the running job is migrated to the target

reserved VM instance without any extension of the

on-demand VM instance.

We denote that the base payment time is , and the

overheads of processing and communication for migration

are  ,  , respectively. Then, the conditions for

request migration are as follows,

       (5)

  (6)

where  is the number of extension of on-demand VM

instance allocation. The equation (8) represents the

number of available reserved VM instances is one at

least when the job on the running on-demand VM

instance is migrated.

Additionally, we add one more condition to the request

migration. The request migration leads to additional

processing and communication overheads increasing not

only the undesirable additional delay but also resource

use cost. Therefore, if the required cost for request

migration is larger than the case without request

migration, then it is advisable to keep the running job on

the on-demand VM instance. That is, if the completed

part of the ongoing job is significantly large compared to

the amount of remaining part which is small, then it

would be better to process the running job on the

on-demand VM instance than the request migration.

The equation (7) represents the constraint for request

migration in the Adaptive Reposition scheme. The left

clause derives the resource use cost with the request

migration and the right clause draws the resource use

cost without the request migration. In addition, to

maximize the cost efficiency by the request migration, the

migration epoch should be coincided with the payment

(7)

Cost Efficient Virtual Machine Brokering in Cloud Computing 227

point of the on-demand VM instance. As the difference

between them is increased, then the cost inefficiency is

also increased. Therefore, the making the right decision

about determining the value  that means the migration

epoch is the important objective in the Adaptive

Reposition scheme. We will study this issue in more

detail later on.

4. Experimental Environment

In section 4, we described the cloud test bed in order

to evaluate the performance of our proposed Adaptive

VM instance allocation scheme in the cloud brokering

system. We establish the open-source based cloud

platform called Openstack [10] that supports a variety of

hypervisors such as XEN, KVM, and etc. The nodes

playing a role of computing called Nova in Openstack are

support to not only provide a computing service to cloud

service users but also manage a resource provisioning,

VM allocation, image registration and networking

management. To evaluate the performance of our proposed

cloud brokering system and the adaptive VM allocation

scheme, the application called ChemApp is processed on

the VM instance. ChemApp is an application in which the

new medicine is developed based on the traditional drug

lists in the database. If we want to generate the certain

medicament, then we can find the related existing

medicines that are similar to or replaceable the target

medicine. Especially, the astronomical cost for development

of novel medicines is dimished significantly by Drug

Repositioning of ChemApp.

The input data for ChemApp is expressed in the file

type ‘sdf’ and attributes in sdf file contains the detailed

information of medicines. Generally, as the number of

medicine entities in the sdf is increased, the processing

time for sdf is also increased. In this study, we do

experiments based on ChemApp with sdf 100, 200, 400

(e.g. the number of sdf means the number of including

medicine entities).

Our cloud brokering system and the adaptive VM

allocation scheme are implemented based on Java JDK 1.6

version. Especially, the cloud client module communicates

with the cloud brokering system through RESTful web

service that is an emerging Resource Oriented Architecture

(ROA) paradigm. In addition, there are 3 VM instance

flavor types for job processing which are allocated to

cloud service users in respond to their application type.

VM instance pricing model for each VM flavor type is

according to the GoGrid pricing model. As mentioned

earlier, the resource use cost of reserved VM instance is

more expensive than the on-demand VM instance.

Detailed experimental parameters are shown in above the

table 2. In part of ‘Scheme’, we compared our proposed

A3R scheme to without(w/o) A3R scheme which is the

stochastic integer programming based VM provisioning

[13].

5. Experimental Results

Figure 5 shows the curves of cost comparison between

the VM allocation with A3R scheme and w/o A3R

scheme. As described earlier, by using A3R scheme, the

number of newly generated on-demand VM instance is

decreased, existing on-demand VM and reserved VM

instance tends to be utilized as much as possible,

therefore the resource usage cost is reduced. Additionally,

the cost curve of w/o A3R is increased exponentially as

the workload from cloud service users is increased (The

longer request interarrival time means the lower workload

of users).

Contrast to the w/o A3R case, the cost curve of A3R

is fluctuated regardless of the workload level. In the A3R

approach, the resource use cost is decided based on how

much the difference between the actual job processing

time and the payment duration of on-demand VM

instance is occurred regardless of the workload level.

Consequently, the resource use cost of A3R is decreased

about 70% on average compared to the w/o A3R

throughout all the interval points.

In figure 6, the result curves of request completion

time of both the A3R scheme and w/o A3R scheme are

drawn in respond to the VM request interarrival time. In

this result, the processing performance in the case of

A3R is better than the case of w/o A3R throughout all

the VM request interval points. By minimizing the

generation of newly on-demand VM instances, the

number of VM instance startup overhead is decreased,

therefore the whole processing time of request is also

decreased. The request completion time of w/o A3R is

228 정보처리학회논문지/컴퓨터 및 통신 시스템 제3권 제7호(2014. 7)

longer than the case of A3R about 300∼500 seconds on

average, that is the performance achievement of our

proposed A3R results in 15% improvement compared to

existing approach.

Fig. 5. Cost comparison of VM management schemes with

A3R and without A3R

Fig. 6. Request completion time of VM management

schemes with A3R and without A3R

Fig. 7. Resource utilization of VM management schemes

with A3R and without A3R

In w/o A3R scheme, some submitted jobs might be

stand by due to the startup overhead of on-demand VM

instance generation so the undesirable queueing delay is

occurred. This leads to degrade the whole performance of

the job processing. But in the case of A3R scheme,

newly on-demand VM instance is not always generated

and allocated to cloud service user whenever the request

is submitted to the cloud brokering system, but existing

running VM instances tend to allocated to the user,

therefore the startup overhead is decreased. However, in

general case, this result might be different to our case. If

the ratio of startup time to whole job processing time is

negligible, then the performance of A3R is similar to the

case of w/o A3R. Figure 7 shows the curves of resource

utilization of both A3R scheme and w/o A3R scheme. In

A3R, the secondhand on-demand VM instances and idle

reserved VM instances are utilized to process requests

from cloud service users as many as possible, therefore

the resource utilization is increased.

 However, in this graph, the curve of A3R is

fluctuated at certain interval points. This is because that

actual job processing time of request is not consistent

with the original allocation time of VM instance at those

points. As the difference between the actual job

processing time and the original resource allocation time

is increased, then the dissipation of resource occupation is

also increased proportionally.

6. Conclusion

In this paper, we propose the adaptive VM allocation

scheme in cloud computing in order to solve the problems

in traditional VM management scheme with the prediction

approaches and optimization techniques. Traditional

predictions are inappropriate to foresee the cloud service

users’ requests including various applications in advance,

so they result in undesirable performance. In addition, the

required processing time for optimization is unacceptable;

it is difficult to apply them to current cloud computing

system. Our adaptive resource allocation scheme based on

the two payment plans including on-demand and

reservation does not need any prediction approaches and

optimization algorithm. Moreover, it reduces the resource

use cost about 70% and increases the utilization of

Cost Efficient Virtual Machine Brokering in Cloud Computing 229

allocated VM instances about 20% on average compared

to existing schemes by using Recycle, Replacement and

Repositioning policies. We conclude that our proposed

schemes are able to contribute to the improved performance

of the future cloud computing system.

Reference

[1] S. Chaisiri, B. -S. Lee, and D. Niyato, “Optimization of

Resource Provisioning Cost in Cloud Computing,” IEEE

Trans. Services Computing, Vol.5, No.2, pp.164-177, Apr.,

2012.

[2] Amazon EC2 (2013), http://aws.amazon.com/ec2/

[3] GoGrid (2013), http://www.gogrid.com/

[4] S. Chaisiri, B. Lee, and D. Niyato, “Optimal Virtual Machine

Placement across Multiple Cloud Providers,” Proc. IEEE

Asia-Pacific Services Computing Conf. (APSCC), 2009.

[5] C. Mark, D. Niyato, and T. Chen-Khong, “Evolutionary

Optimal Virtual Machine Placement and Demand Forecaster

for Cloud Computing,” Proc. IEEE Int’l Conf on Advanced

Information Networking and Apps. (ICAINA), 2011.

[6] S. Son, and K. Sim, “A Price- and-Time-Slot-Negotiation

Mechanism for Cloud Service Reservations,” IEEE Trans.

Systems, Man, and Cybernetics-Part B: Cybernetics, Vol.42,

No.3, pp.713-728, June, 2012.

[7] R. Buyya, C.S. Yeo, and S. Venugopal, “Market-oriented

cloud computing: Vision, hype, and reality for delivering IT

services as computing utilites,” Proc. IEEE Int’l Conf on

High Performance Computing and Communications.

(HPCC), 2008.

[8] J. Simarro, R. Vozmediano, R. Montero, and I. Llorente,

“Dynamic Placement of Virtual Machines for Cost

Optimization in Multi-CLoud Environments,” Proc. IEEE

Int’l Conf on High Performance Computing and Simulation.

(HPCS), 2011.

[9] R. Jeyarani, N. Nagaveni, and R. Vasanth Ram, “Design and

implementation of adaptive power-aware virtual machine

provisioner(APA-VMP) using swarm intelligence,” Elsvier,

Future Generation Computer Systems, Vol.28, Issue.5,

pp.811-821, May, 2012.

[10] OpenStack Foundation, http://www.openstack.org/, 2013.

[11] D. Kang, S. Kim, Y. Ren, B. Kim, W. Kim, Y. Kim, C. Youn,

and C. Jeong, “Enhancing a Strategy of Virtualized Resource

Assignment in Adaptive Resource Cloud Framework,” Proc.

ACM Int’l Conf on Ubiquitous Information Management and

Communication. (ICUIMC), 2013.

[12] H. Zhang, G. Jiang, K. Yoshihira, H. Chen, and A. Szxena,

“Intelligent Workload Factoring for a Hybrid Cloud

Computing Model,” Proc, Congress on Services-I, 2009.

[13] S. Chaisiri, B. Lee, and D. Niyato, “Optimal Virtual Machine

Placement across Multiple Cloud Providers,” Proc, IEEE

Int’l Conf on Asia-Pacific Services Computing Conference

(APSCC), 2009.

[14] Q. Zhang, Q. Zhu, and R. Boutaba, “Dynamic Resource

Allocation for Spot Markets in Cloud Compputing

Environments,” Proc, IEEE Int’l Conf on Utility and Cloud

Computing, 2011.

Dong-Ki Kang

e-mail : dkkang@kaist.ac.kr

He received a M.S degree in Dept. of

Computer Engineering from Chonbuk,

National Univ, Jeonju, Korea in 2011.

He is currently working toward the

Ph.D. degree in Electrical Engineering at

Korea Advanced Institute of Technology (KAIST), Daejeon,

Korea. His main research interests include Virtualized

Resource Management, and Cloud Computing.

Seong-Hwan Kim

e-mail : s.h_kim@kaist.ac.kr

He received the B.S. degree in Media

and Communications Engineering from

Hanyang University, Seoul, Korea in

2012. Now he is a Ph.D. candidate in

Department of Electrical Engineering at

Korea Advanced Institute of Science

and Technology(KAIST), Daejeon, Korea and is member of

Advanced Network and Computing Laboratory in KAIST. His

research interests include mobile cloud computing and cloud

collaboration.

230 정보처리학회논문지/컴퓨터 및 통신 시스템 제3권 제7호(2014. 7)

Chan-Hyun Youn

e-mail : chyoun@kaist.ac.kr

Chan-Hyun Youn received the B.Sc and

M.Sc degrees in Electronics Engineering

from Kyungpook National University,

Daegu, Korea, in 1981 and 1985, respectively.

He also received a Ph.D. in Electrical

and Communications Engineering from

Tohoku University, Japan, in 1994. Since 2009, he has been a

professor at Department of Electrical Engineering in KAIST,

Daejeon, Korea. He also was a Dean of Office of Planning

Affairs and a Director of Research and Industrial Cooperation

Group at former Information and Communications University,

in 2006 and 2007. He was a Visiting Professor at MIT in

2003 and has been engaged in the development of

Physio-Grid system with Prof. R.G. Mark’s Group in LCP

(Laboratory for Computational Physiology) of MIT since 2002.

He also is a Director of Grid Middleware Research Center at

KAIST. Where, he is developing core technologies that are in

the areas of mobile cloud, mobile collaboration system,

Internet computing workflow management, distributed network

architecture, communication middleware, advanced e-Healthcare

system, e-Health application services and others. Currently,

he is serving the Editor-in-Chief of KIPS (Korea Information

Processing Society), and an Editor of Journal of Healthcare

Engineering (U.K.), and served head of Korea branch

(computer section) of IEICE, Japan (2009, 2010). He is a

member of IEEE, KICS and IEICE, respectively.

