DOI QR코드

DOI QR Code

A Parallel Approach for Accurate and High Performance Gridding of 3D Point Data

3D 점 데이터 그리딩을 위한 고성능 병렬처리 기법

  • 이창섭 (아주대학교 컴퓨터공학과) ;
  • ;
  • 이희진 (미 캘리포니아대학교) ;
  • 오상윤 (아주대학교 컴퓨터공학과)
  • Received : 2014.06.09
  • Accepted : 2014.08.08
  • Published : 2014.08.31

Abstract

3D point data is utilized in various industry domains for its high accuracy to the surface information of an object. It is substantially utilized in geography for terrain scanning and analysis. Generally, 3D point data need to be changed by Gridding which produces a regularly spaced array of z values from irregularly spaced xyz data. But it requires long processing time and high resource cost to interpolate grid coordination. Kriging interpolation in Gridding has attracted because Kriging interpolation has more accuracy than other methods. However it haven't been used frequently since a processing is complex and slow. In this paper, we presented a parallel Gridding algorithm which contains Kriging and an application of grid data structure to fit MapReduce paradigm to this algorithm. Experiment was conducted for 1.6 and 4.3 billions of points from Airborne LiDAR files using our proposed MapReduce structure and the results show that the total execution time is decreased more than three times to the convention sequential program on three heterogenous clusters.

3D 점 데이터는 높은 정확성을 가진 사물의 표면 정보 데이터로 다양한 분야에서 사용되고 있으며, 특히 지리학에서 지형 파악과 분석에 많이 사용되고 있다. 일반적으로 3D 점 데이터의 Gridding 과정을 거치게 되는데 이는 불연속적인 점 데이터를 일정한 좌표 값으로 만드는 과정으로 긴 실행 시간과 높은 비용이 필요하다. 특히 Gridding 과정 중 보간 작업을 위해서 Kriging이 높은 정확성으로 주목받고 있지만 처리과정이 복잡하고 연산이 많아 처리속도가 상대적으로 느리기 때문에 많이 사용되지 않고 있다. 본 논문에서는 Gridding을 고성능으로 처리하기위해 Kriging 연산 과정을 병렬화했으며 격자 자료구조를 MapReduce 패러다임에 맞게 변형하여 Kriging에 적용하였다. 실험은 항공 LiDAR 데이터 약 1.6백만 개와 4.3백만 개의 점 데이터를 이용해서 제안한 MapReduce 구조에 적용하였고, 그 결과 3대의 이기종 클러스터에서 전체 실행시간이 순차적 프로그램에 비해 최대 3.4배 단축하였다.

Keywords

References

  1. H. Woo, E. Kang, S. Wang, and K. H. Lee, "A new segmentation method for point cloud data", International Journal of Machine Tools and Manufacture, Vol.42, Issue.2, pp.167-178, 2002. https://doi.org/10.1016/S0890-6955(01)00120-1
  2. V. Verma, R. Kumar, and S. Hsu, "3d building detection and modeling from aerial lidar data", IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol.2, pp.2213-2220, 2006.
  3. G. Sohn and I. Dowman, "Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction", ISPRS Journal of Photogrammetry and Remote Sensing, Vol.62, Issue.1, pp.43-63, 2007. https://doi.org/10.1016/j.isprsjprs.2007.01.001
  4. M. Himmelsbach, T. Luettel, and H. Wuensche, "Real-time object classification in 3D point clouds using point feature histograms", IROS 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.994-1000, 2009.
  5. M. Szarvas, U. Sakai, and J. Ogata, "Real-time pedestrian detection using LIDAR and convolutional neural networks", Intelligent Vehicles Symposium, IEEE, pp.213-218, 2006.
  6. G. Chust, I. Galparsoro, A. Borja, J. Franco, and A. Uriarte, "Coastal and estuarine habitat mapping, using LIDAR height and intensity and multi-spectral imagery", Estuarine, Coastal and Shelf Science, Vol.78, Issue.4, pp.633-643, 2008. https://doi.org/10.1016/j.ecss.2008.02.003
  7. H. Lee, K. C. Slatton, B. E. Roth, and W. P. Cropper Jr, "Adaptive clustering of airborne LiDAR data to segment individual tree crowns in managed pine forests", International Journal of Remote Sensing, Vol.31, Issue.1, pp.117-139, 2010. https://doi.org/10.1080/01431160902882561
  8. N. El-Sheimy, C. Valeo, and A. Habib, "Digital terrain modeling: acquisition, manipulation and applications", Artech House, Boston, 2005.
  9. M. Oliver, R. Webster, and J. Gerrard, "Geostatistics in physical geography. Part I: theory", Transactions of the Institute of British Geographers, pp.259-269, 1989.
  10. Q. Guo, W. Li, H. Yu, and O. Alvarez, "Effects of topographic variability and lidar sampling density on several DEM interpolation methods", Photogrammetric Engineering and Remote Sensing, Vol.76, Issue.6, pp.701-712, 2010. https://doi.org/10.14358/PERS.76.6.701
  11. C. D. Lloyd and P. M. Atkinson, "Deriving DSMs from LiDAR data with kriging", International Journal of Remote Sensing, Vol.23, Issue.12, pp.2519-2524, 2002. https://doi.org/10.1080/01431160110097998
  12. T. Hengl, "Finding the right pixel size", Computers & Geosciences, Vol.32, Issue.9, pp.1283-1298, 2006. https://doi.org/10.1016/j.cageo.2005.11.008
  13. P. K. Agarwal, L. Arge, and A. Danner, "From point cloud to grid DEM: A scalable approach", in Progress in Spatial Data Handling, Springer Berlin Heidelberg, pp.771-788, 2006.
  14. H. Wu, X. Guan, and J. Gong, "ParaStream: A parallel streaming Delaunay triangulation algorithm for LiDAR points on multicore architectures", Computers & Geosciences, Vol.37, Issue.9, pp.1355-1363, 2011. https://doi.org/10.1016/j.cageo.2011.01.008
  15. M. Hongchao and Z. Wang, "Distributed data organization and parallel data retrieval methods for huge laser scanner point clouds", Computers & Geosciences, Vol.37, Issue.2, pp.193-201, 2011. https://doi.org/10.1016/j.cageo.2010.05.017
  16. X. Guan and H. Wu, "Leveraging the power of multi-core platforms for large-scale geospatial data processing: Exemplified by generating DEM from massive LiDAR point clouds", Computers & Geosciences, Vol.36, Issue.10, pp.1276-1282, 2010. https://doi.org/10.1016/j.cageo.2009.12.008
  17. S. Krishnan, C. Baru, and C. Crosby, "Evaluation of MapReduce for gridding LIDAR data", 2010 IEEE Second International Conference on Cloud Computing Technology and Science (CloudCom), pp.33-40, 2010.
  18. K. Hennebohl, M. Appel, and E. Pebesma, "Spatial interpolation in massively parallel computing environments", in Proceedings of the 14th AGILE International Conference on Geographic Information Science, 2011.
  19. S. H. Han, J. Heo, H. G. Sohn, and K. Yu, "Parallel processing method for airborne laser scanning data using a pc cluster and a virtual grid", Sensors, Vol.9, Issue.4, pp.2555-2573, 2009. https://doi.org/10.3390/s90402555
  20. The Apache Common Mathematics Library [Internet] http://commons.apache.org/proper/commons-math/
  21. Surfer [Internet] http://www.goldensoftware.com/products/surfer