DOI QR코드

DOI QR Code

메탄 하이드레이트 생산 묘사를 위한 수치도구의 개발

Development of a Numerical Simulator for Methane-hydrate Production

  • 신호성 (울산대학교 건설환경공학부)
  • Shin, Hosung (Dept. of Civil and Environmental Engrg., Univ. of Ulsan)
  • 투고 : 2014.08.31
  • 심사 : 2014.10.01
  • 발행 : 2014.09.30

초록

방대한 저장량으로 차세대 에너지원으로 평가받는 메탄가스 하이드레이트는 생산과정에서 유발될 수 있는 문제를 최소화하고 최적의 생산조건을 선정하기 위한 하이드레이트 포함한 다공질 재료의 THM 현상에 대한 프로그램의 개발이 절실하다. 기존의 해석 프로그램들은 국제공동연구를 통하여 프로그램들간의 상호 비교검증을 진행하고 있으나, 예측값의 불일치와 수렴성에 문제가 있는 것으로 나타났다. 본 논문에서는 다공질 재료내 메탄 하이드레이트의 해리 현상을 해석할 수 있는 fully coupled THM 유한요소 프로그램을 개발하였다. Methane hydrate, soil, water, 및 methane gas의 질량보존의 법칙, 에너지 보존의 법칙, 그리고 힘평형 방정식으로부터 지배방정식을 유도하였다. 다양한 주변수들의 조합을 통하여 주변수를 변위, 가스 포화도, 유체압, 온도, 하이드레이트 포화도로 선택하였으며, 상변화 전영역에서 해석이 가능하도록 하였다. 하이드레이트의 해리를 예측하는 모델은 kinetic model을 이용하였다. 개발된 THM 유한요소 프로그램을 이용하여 메탄가스 생산에 관한 Masuda의 실내 모형실험 결과와 비교적 분석을 수행하였으며, 해의 수렴성과 안정성을 확인할 수 있었다.

Methane gas hydrate which is considered energy source for the next generation has an urgent need to develop reliable numerical simulator for coupled THM phenomena in the porous media, to minimize problems arising during the production and optimize production procedures. International collaborations to improve previous numerical codes are in progress, but they still have mismatch in the predicted value and unstable convergence. In this paper, FEM code for fully coupled THM phenomena is developed to analyze methane hydrate dissociation in the porous media. Coupled partial differential equations are derived from four mass balance equations (methane hydrate, soil, water, and hydrate gas), energy balance equation, and force equilibrium equation. Five main variables (displacement, gas saturation, fluid pressure, temperature, and hydrate saturation) are chosen to give higher numerical convergence through trial combinations of variables, and they can analyze the whole region of a phase change in hydrate bearing porous media. The kinetic model is used to predict dissociation of methane hydrate. Developed THM FEM code is applied to the comparative study on a Masuda's laboratory experiment for the hydrate production, and verified for the stability and convergence.

키워드

참고문헌

  1. Brooks, A.N. and Hughes, T.J.R. (1982), "Streamline upwind/Petrov- Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations", Comput. Methods Appl. Mech. Engrg., 32, 199-259. https://doi.org/10.1016/0045-7825(82)90071-8
  2. Cha, J.H., Park, Y., Cha, M., Yeon, S.H., and Lee, H. (2008), "Phase behavior and structural analyses of the THF + H2 binary Clathrate hydrate", Korean chemical engineering research, 46(6), 1095-1099.
  3. Clarke, M.A. and Bishnoi, P.R. (2001), "Measuring and modeling the rate of decomposition of gas hydrates formed from mixtures of methane and ethane", Chem. Eng. Sci., 56, 4715-4724. https://doi.org/10.1016/S0009-2509(01)00135-X
  4. Gamwo, I. K. and Liu, Y. (2010), "Mathematical modeling and numerical simulation of methane production in a hydrate reservoir", Ind. Eng. Chem. Res., 49, 5231-5245. https://doi.org/10.1021/ie901452v
  5. Kim, H. C., Bishnoi, P. R., Heidemann, R. A., and Rizvi, S. S. H. (1987), "Kinetics of methane hydrate decomposition",. Chemical Engineering Science, 42, 1645-1653. https://doi.org/10.1016/0009-2509(87)80169-0
  6. Masuda, Y., Fujinaga, Y., and Naganawa, S. (1999), "Modeling and experiment studies on dissociation of methane gas hydrates in Berea sandstone cores", Proceedings of the 3rd International Conference on Gas Hydrate, Salt Lake City, UT.
  7. Moridis, G. J. and Pruess, K. (1998), "T2SOLV: An enhanced package of solvers for the Tough2 family of reservoir simulation codes", Geothermics, 27(4), 415-444. https://doi.org/10.1016/S0375-6505(98)00021-2
  8. Moridis, G.J., Kowalsky, M.B., and Pruess, K. (2008), "Tough-Hydrate v1.0 User's Manual: A code for the simulation of system behavior in hydrate-bearing geologic media", Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California.
  9. Moridis, G. J., Reagan, M. T., Kim, S. J., Seol, Y., and Zhang, K. (2009), "Evaluation of the gas production potential of marine hydrate deposits in the Ulleung basin of the Korean East Sea", SPE J., 14(4), 759-781. https://doi.org/10.2118/110859-PA
  10. Ruan, X., Song, Y., Zhao, J., Liang, H., Yang, M., and Li, Y. (2012), "Numerical simulation of methane production from hydrates induced by different depressurizing approaches", Energy, 5, 438-458.
  11. Shin, H., Kim, J.M., Lee, J., and Lee, S.R. (2012), "Mechanical constitutive model for frozen soil", Journal of Korean Geotechnical Society, 28(5), 85-94. https://doi.org/10.7843/kgs.2012.28.5.85
  12. Sloan, E.D. and Koh, C.A. (2008), Clathrate hydrates of natural gases, 3rd ed. CRCPress, Boca Raton, FL.
  13. Sun, X., Nanchary, N., and Mohanty, K. K. (2005), "1-D modeling of hydrate depressurization in porous media", Transp. Porous Media, 58, 315-338. https://doi.org/10.1007/s11242-004-1410-x
  14. White, M. D., Wurstner, S. K., and McGrail, B. P. (2011), "Numerical studies of methane production from Class 1 gas hydrate accumulations enhanced with carbon dioxide injection", Marine and Petroleum Geology, 28(2), 546-560. https://doi.org/10.1016/j.marpetgeo.2009.06.008
  15. Wilder, J., Moridis, G., Wilson, S., Kurihara, M., White, M., Masuda, Y., Anderson, B., Collett, T., Hunter, R. Narita, H., Pooladi-Darvish, M., Rose, K., and Boswell, R. (2008), "An international effort to compare gas hydrate reservoir simulators", Proc. 6th International Conference on Gas Hydrates, July 6-10, 2008, Vancouver, BC.
  16. Yousif, M. H., Abass, H. H., Selim, M. S., and Sloan, E. D. (1991), "Experimental and theoretical investigation of methane gas hydrate dissociation in porous media", SPE ReserVoir Eng., 69-76.

피인용 문헌

  1. 감압법을 이용한 가스 생산 시 하이드레이트 부존 퇴적층의 지반 안정성 및 가스 생산성에 대한 시추 공저압 및 감압 속도의 영향 vol.37, pp.3, 2014, https://doi.org/10.7843/kgs.2021.37.3.19