DOI QR코드

DOI QR Code

Physiological Response of Four Corn Cultivars to Soil Salinity

토양염농도에 따른 식용옥수수 품종들의 생장특성

  • 김선 (농촌진흥청 국립식량과학원 벼맥류부) ;
  • 최원영 (농촌진흥청 국립식량과학원 벼맥류부) ;
  • 정재혁 (농촌진흥청 국립식량과학원 벼맥류부) ;
  • 이경보 (농촌진흥청 국립식량과학원 벼맥류부)
  • Received : 2014.04.15
  • Accepted : 2014.08.13
  • Published : 2014.09.30

Abstract

This study conducted experiments on the reclaimed land of Saemangeum located in Jeongrabuk-do in order to gain basic information about growth characteristics and yield ability according to soil salinity. Having soil excluding salt as a control group, this study adjusted the specimens' soil salinity to level 4 and then planted four varieties including Ilmichal Corn to investigate the growth or grain yield according to salinity. About the corn establishment rate according to soil salinity, over 97% up to $3.2dS\;m^{-1}$ was established, and then, it was reduced gradually according to the increase of concentration. According to the salt concentration of soil more required growth duration from seeding to heading comparing to non-treatment salt was delayed, at $1.6dS\;m^{-1}$, two days were delayed, at $3.2dS\;m^{-1}$, four to six days were delayed differently by varieties, and at $4.8dS\;m^{-1}$, six to 10 days were delayed. About the plant fresh weight according to soil salinity, Chalok 4 and Eolrukchal indicated 93%~97% or so compared with the salt-free one at $1.6dS\;m^{-1}$, and Chalok No. 4 showed 79% at the salinity of $3.2dS\;m^{-1}$, too, and it was a relatively higher growth percentage than those of the other varieties. In terms of dried seed weight according to soil salinity, compared with the corns cultivated in the control group, averagely 12.1% was lowered at the time of cultivation at $1.6dS\;m^{-1}$, and $3.2dS\;m^{-1}$ 40% was lowered, and about 70% was lowered at $4.8dS\;m^{-1}$. According to the result of examining the point of time that dried seed start to reduce due to soil salinity with the regression equation, soil salinity which starts the reduction of grain weight is $1.67dS\;m^{-1}{\sim}2.18dS\;m^{-1}$, and it differs by varieties, and EC of 50% that the yield reduces in half is $2.96dS\;m^{-1}{\sim}4.45dS\;m^{-1}$. And the degree of influence on each of the growth factors according to soil salinity is founded to be in the order of establishment rate

제염중인 간척지 토양에 식용옥수수 재배 가능성을 검토코자 새만금 간척지에서 염이 제거된 토양을 대조구로 하여 토양염농도를 4수준으로 조정하여 일미찰옥수수등 4 품종을 식재하여 염농도에 따른 생장과 수량을 조사하였다. 1. 토양염농도에 따른 옥수수 입모율은 $3.2dS\;m^{-1}$까지 97% 이상 입모 되었으며, 이후 농도증가에 따라 약간씩 감소하였고. 염농도별 개화 시기는 $1.6dS\;m^{-1}$에서는 2일이 지연되었고, $3.2dS\;m^{-1}$에서는 품종에 따라 4~6일이, $4.8dS\;m^{-1}$에서는 6~10일이 지연되었다. 2. 토양염농도에 따른 식물체 생중은 찰옥4호와 얼룩찰1호가 높아서 $1.6dS\;m^{-1}$에서는 무염대비 93~97%정도였고, 염농도 $3.2dS\;m^{-1}$에서는 79% 정도의 생장량을 나타냈다. 3. 토양염농도에 따른 이삭당 종실 건물중은 Control구에 재배된 옥수수들에 비해 $1.6dS\;m^{-1}$에 재배되었을 때 평균 12.1%가 억제되었으며, $3.2dS\;m^{-1}$ 40%가 억제되었고, $4.8dS\;m^{-1}$에서는 약 70%가 억제되었다. 4. 품종간에는 찰옥 4호가 $3.2dS\;m^{-1}$에서도 이삭당 종실건물중의 감소가 상대적으로 적었다. 5. 토양염농도DP 따른 종실 무게의 감소는 $1.67dS\;m^{-1}$ - $2.18dS\;m^{-1}$에서부터 수량 감수가 시작되었고, 또한 수량의 절반이 감소되는 EC of 50%는 $2.96dS\;m^{-1}$ - $4.45dS\;m^{-1}$였다. 6. 토양염농도에 따른 각 생장요소들 간의 평균값을 비교한 결과 생장요소들이 받는 영향정도는 입모율<초장=이삭생중<식물체생중<수량 등의 순을 나타냈다.

Keywords

References

  1. Bresler, E., B. L. McNeal, and D. L Carter. 1982. Saline and Sodic Soils. Spring - Verlag Berlin Heidelberg New York pp. 167-171.
  2. Chon, S, U. and J. H. Park. 2003 Parameter on Physiological Respons of Soybean (Glycine max Merr.) to Salinity. Korean J. Environment. Agriculture. 22(1) : 185-191. https://doi.org/10.5338/KJEA.2003.22.3.185
  3. Hwang, N. Y., J. Ryu, J. S. Na, D. H. Oh, K. H. Park, and B. J. Choi. 1991. Studies on the Changes of Soil Salinity in the Keyhwa Saline Paddy Soil. Korean J. Soil. Fert. 24(4) : 265-271.
  4. Kim, J. G. and M. S. Han. 1990. Effects of sand mulching on forage production in newly reclaimed tidal lands II. Studies on growth, dry matter accumulation and nutrient quality of selected forage crops grown on saline soils. Korean J. Grassl Sci. 10 : 77-83.
  5. Kim, S., C. H. Yang, J. H. Jeong, W. Y. Choi, K. S. Lee. and C. J. Kim. 2013. Physiological Response of Potato Variety to Soil Salinity. Korean J. Crop. Sci. 58(2) : 85-90. https://doi.org/10.7740/kjcs.2013.58.2.085
  6. Lee, S. H., B. D. Hong, Y. M. An, and H. M. Ro. 2003. Relation between Growth Condition of Six Upland Crop and Soil Salinity in Reclaimed Land. Korean J. Soil. Fert. 36(2) : 66-71.
  7. Lee, S. H., S. H. Yoo, S. I. Seol, Y. A,. Y. S Jung, and S. M Lee. 2000. Assesment of Salt Damage for Upland-Crop in Dae-Ho Reclaimed Soil. Korean Journal of Environment Agriculture 19(4) : 358-363.
  8. Mass, E. V. and G. J. Hoffman. 1977. Crop solt tolerance - current assessment. J Irrig Drain Div Proc Am Soc Civil Eng 103 : 115-134.
  9. Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25 : 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  10. Shin, J. S., W. H. Kim, S.H. Lee, S. H. Yoon, E. S. Chung, and Y. C. Lim. 2004. Comparison of dry matter and feed value of major summer forage crops in the reclaimed tidal land. Korean J. Grassl Sci. 24 : 335-340. https://doi.org/10.5333/KGFS.2004.24.4.335
  11. Shin, J. S., S. H. Lee, W. H. Kim, J. G. Kim, S. H. Yoon, and K. B. Lim. 2005. Effects of ammonium sulfate and potassium sulfate fertilizer on dry matter yield and forage quality of sorghum${\times}$sudangrass hybrid in reclaimed tidal land. Korean J. Grassl Sci. 25 : 245-250. https://doi.org/10.5333/KGFS.2005.25.4.245
  12. Salt Accumulation Soil and Agriculture. 1991. Mechanisms of salt stress and salinity tolerance on a plant. Hakuyusha. pp. 123-153.
  13. Yang, C. H., J. H. Lee, S. Kim, J. H. Jeong, N. H. Baek, W. Y. Choi, S. B. Lee, Y. D. Kim, S. J. Kim, and G. B. Lee. 2012. Study on Forage Cropping System Adapted to Soil Characteristics in Reclaimed Tidal Land. Korean J. Soil Sci. Fert. 45(3) : 385-392. https://doi.org/10.7745/KJSSF.2012.45.3.385

Cited by

  1. Influence of Soil Salinity on the Growth Response and Inorganic Nutrient Content of a Millet Cultivar vol.61, pp.2, 2016, https://doi.org/10.7740/kjcs.2016.61.2.113