DOI QR코드

DOI QR Code

경상북도 북후면-평은면 지역에 발달된 예천전단대의 구조적 특성

Structural characteristics of the Yecheon Shear Zone in the Pukhumyeon-Pyeongeunmyeon area, Gyeongsangbukdo, Korea

  • 강지훈 (안동대학교 지구환경과학과)
  • Kang, Ji-Hoon (Department of Earth and Environmental Sciences, Andong National University)
  • 투고 : 2014.04.21
  • 심사 : 2014.05.07
  • 발행 : 2014.06.30

초록

소백산육괴의 중앙부에 위치하는 경상북도 북후면-평은면 지역에서 주 구성암류인 선캠브리아기 변성퇴적암류와 중생대 화강암에 대한 변형된 암석 및 미구조 연구를 통하여 (동)북동-(서)남서 방향으로 발달하는 우수 주향 이동성 예천전단대의 상대적인 형성시기, 변형온도, 초압쇄암대의 분포 등을 파악하였다. 연성 변형된 주요 암석구조는 전단변형에 의해 형성된 압쇄구조면과 신장선구조 그리고 편마구조면 내지 압쇄구조면이 습곡되어 형성된 (동)남동-버전스의 완침강-중경사 밀착습곡 등이 있다. 연성전단변형 동안에 형성된 장석들의 특징적인 미구조는 플레임 퍼어사이트, 밀메카이트, 미세단열, 미세킹크, 킹크대, 파동소광 등이 인지된다. 재결정된 석영집합체의 c-축 배열은 rhomb와 basal가 탁월한 미끄럼계로 작용하여 형성된 single girdle과 Type I crossed girdle 형태를 보여준다. 전단운동감각 결정면상에서 인지되는 전단운동감각은 우세한 방향성인 북서-경사와 부수적인 방향성인 남동-경사 압쇄구조면상에서 상부-북동-이동과 상부-남서-이동을 각각 보여준다. 이러한 특징적인 암석 및 미구조로부터 예천전단운동은 밀착습곡이 형성된 이후 발생하였으며, 예천전단운동이 발생할 당시의 변형온도는 $350{\sim}450^{\circ}C$이었음을 알 수 있다. 선캠브리아기 변성퇴적암류의 대상 분포와 변형된 선캠브리아기 변성퇴적암류의 장석과 중생대 화강암의 석영의 입도 분포로부터 불노봉과 박달산 북부를 통과하는 (동)북동 방향의 예천전단대의 초압쇄암대가 설정된다.

The dextral strike-slip Yecheon Shear Zone of (E)NE-(W)SW trend is developed in the Pukhumyeon-Pyeongeunmyeon area, Gyeongsangbukdo, in the central part of Sobaeksan Massif, Korea which mainly consists of Precambrian metasedimentary rocks and Mesozoic granite. This paper researched the relative formation time, the deformation temperature, and the distribution of ultramylonite zone of Yecheon Shear Zone from the analysis of their deformed rock structures and microstructures. There are the mylonite foliation and stretching lineation by shear deformation, and the (E)SE-vergence gentle plunging, moderately inclined tight fold defined by the gneissosity and mylonite foliation as ductilely deformed main rock structures. Flame perthites, myrmekites, microfractures, microkinks, kinkband, and undulatory extinction are recognized as characteristic microstructures in feldspars during ductile shear deformation. Patterns of c-axis fabrics of recrystallized quartz aggregate display single girdle and type I crossed girdle where the rhomb and basal slip systems are predominant. The shearing senses on sense-of-shear plane show top-to-the-NE and top-to-the-SW on the predominant NW-dipping and subordinate SE-dipping mylonite foliations, respectively. These characteristic rock structures and microstructures suggest that the Yecheon ductile shearing occurred under $350{\sim}450^{\circ}C$ deformation temperature after the tight folding. The (E)NE trending ultramylonite zone of Yecheon Shear Zone, which passes through the Pulnobong and the north part of Pakdalsan, is established from the zonal distribution of Precambrian metasedimentary rocks and the grain-size distribution of feldspars in the Precambrian metasedimentary rocks and quartzs in the Mesozoic granite.

키워드

참고문헌

  1. Behrmann, J.H. and Platt, J.P., 1982, Sense of nappe emplacement from quartz c-axis fabrics. Earth and Planetary Science Letters, 59, 208-215. https://doi.org/10.1016/0012-821X(82)90126-1
  2. Berthe, D., Choukroune, P. and Jegouzo, P., 1979, Orthogeneiss, mylonite and non coaxial deformation of granites: the example of the South Armorican Shear Zone. Journal of Structural Geology, 1, 31-42. https://doi.org/10.1016/0191-8141(79)90019-1
  3. Chang, T.W., 1991, On the microstructures of mylonitic rocks -with special reference to Yecheon Shear Zone, Korea-. Journal of the Geological Society of Korea, 27, 177-190.
  4. Chang, T.W. and Han, Y.M., 1989, On the ductile deformation of a granite in the vicinity of Chonju, Korea. Journal of the Geological Society of Korea, 25, 164-174 (in Korean with English abstract).
  5. Choo, S.H., 1988, Rb/Sr age determination, Yeongnam Massif, Korea (IV) (granitic gneiss in the Mokpo province, Ulri series and granitoids in the Taebaek province). Korea Institute of Energy and Resources, KR-87-27, 1-49 (in Korean).
  6. Cluzel, D., Lee, B.J. and Cadet, J.P., 1991, Indosinian ductile dextral fault system and synkinematic plutonism in the southwest of Ogcheon Belt (S. Korea). Tectonophysics, 194, 131-151. https://doi.org/10.1016/0040-1951(91)90277-Y
  7. Davis, G.H. and Reynolds, S.J., 1996, Structural geology of rocks and regions. John Wiley and Sons, Incorporation, 776p.
  8. Gapais, D., 1989, Shear structures within deformed granites: mechanical and thermal indicators. Geology, 17, 1144-1147. https://doi.org/10.1130/0091-7613(1989)017<1144:SSWDGM>2.3.CO;2
  9. Jin, M.S. and Jang, B.A., 1999, Thermal history of the Late Triassic to Early Jurassic Yeongju-Chunyang granitoid in the Sobaegsan Massif, South Korea, and its tectonic implication. Journal of the Geological Society of Korea, 35, 189-200 (in Korean with English abstract).
  10. Kang, J.-H., 1998, The temperature condition for the mylonitization of the Cheongsan granite, Korea -structural analysis of the deformed Cheongsan granite, Korea-. Journal of the Petrological Society of Korea, 7, 53-68 (in Korean with English abstract).
  11. Kang, J.-H. and Kim, H.S., 2000, Structural analysis of the North Sobaegsan Massif in the Sangun-myeon area, Bonghwa-gun, Korea. Journal of the Petrological Society of Korea, 9, 254-270 (in Korean with English abstract).
  12. Kang, J.-H., Kim, H.S. and Oh, S.B,. 1997, Geological structure of Precambrian to Paleozoic metasedimentary rocks in the Janggunbong area, Korea -crustal evolution and environmental geology of the central part of the North Sobaegsan Massif, Korea-. Journal of the Petrological Society of Korea, 6, 244-259 (in Korean with English abstract).
  13. Kang, J.-H., Kim, N.H., Park, K.-H., Song, Y.S. and Ock, S.-S., 2004, Deformation history of Precambrian metamorphic rocks in the Yeongyang-Uljin area, Korea. Journal of the Petrological Society of Korea, 13, 179-190 (in Korean with English abstract).
  14. Kang, J.-H., Kim, N.H.. Song, Y.S. and Park, K.-H., 2006, Deformation history of Precambrian metamorphic rocks of Sobaegsan Massif in Giseong-myeon area, Uljin-gun, Gyeongsangbuk-do, Korea. Journal of the Petrological Society of Korea, 15, 49-59 (in Korean with English abstract).
  15. Kang, J.-H., Oh, S.B. and Kim, H.S., 1998, Time-relationship between deformation and metamorphism of the Paleozoic metasedimentary rocks of the North Sobaegsan Massif in the Janggunbong area, Korea. Journal of the Petrological Society of Korea, 7, 190-206 (in Korean with English abstract).
  16. KIGAM, 1995, Geological map of Korea (1: 1,000,000). Korea Institute of Geology, Mining and Materials.
  17. Kim, B.K., Lee, H.Y., Kim, S.J. and Cheong, J.G., 1988, Geological report of the Andong sheet (1: 50,000). Korea Institute of Energy and Resources, 7p.
  18. Kim, J.H. and Kee, W.S., 1991, Tectonic significances of Soonchang Shear Zone, the Hwasun coalfield, Korea. Journal of the Geological Society of Korea, 27, 642-655 (in Korean with English abstract).
  19. Kim, S.W., Kwon, S. and Ryu, I.-C., 2009, Geochronological constraints on multiple deformations of the Honam Shear Zone, South Korea and its tectonic implication. Gondwana Research, 16, 82-89. https://doi.org/10.1016/j.gr.2008.12.004
  20. Lee, B.J., Kim, D.H. and Jeon, K.-S., 1990, The Characteristics of the ductile shear zone around Youngkwang-up in the SW part of Korean Peninsula. Journal of the Geological Society of Korea, 26, 304-312 (in Korean with English abstract).
  21. Lee, D.S. and Lee, H.Y., 1963, Explanatory text of the geological map of Yean sheet (1: 50,000). Geological Survey of Korea, 4p.
  22. Lee, M.S., Park, B.S. and Kim, J.H., 1989, Geological report of the Yeongju sheet (1: 50,000). Korea Institute of Energy and Resources, 7p.
  23. Lee, S.M. and Kim, H.S., 1984, Metamorphic studies on the so-called Yulri and Weonnam Groups in the Mt. Taebaeg area. Journal of the Geological Society of Korea, 20, 195-214 (in Korean with English abstract).
  24. Lister, G.S., 1977, Discussion: crossed-girdle c-axis fabrics in quartzites plastically deformed by plane strain and progressive simple shear. Tectonophysics, 39, 51-54. https://doi.org/10.1016/0040-1951(77)90087-7
  25. Lister, G.S. and Snoke, A.W., 1984, S-C mylonite. Journal of Structural Geology, 6, 617-638. https://doi.org/10.1016/0191-8141(84)90001-4
  26. Lister, G.S. and Williams, P.F., 1979, Fabric development in shear zones: theoretical controls and observed phenomena. Journal of Structural Geology, 1, 283-297. https://doi.org/10.1016/0191-8141(79)90003-8
  27. Mainprice, D.H. and Bouchez, J.L., 1987, Characterization of slip systems in naturally deformed quartz by microstructural, X-ray texture goniometry and transmission electron microscopy studies: application to sample fabric types as a function of temperature. In Conference Report: Crystallographic fabrics and deformation histories(reported by R.D. Law). Journal of Geological Society of London, 144, 677 (Abstract).
  28. Passchier, C.W., 1982, Mylonitic deformation in the Saint-Barthe'lemy Massif, French Pyrenees, with emphasis on the genetic relationship between ultramylonite and pseudotachylyte. GUA papers of geology. Series 1, 16, 167-176.
  29. Passchier, C.W. and Trouw, R.A.J., 1996, Microtectonics. Springer-Verlag Berlin Heidelberg New York, 289p.
  30. Pryer, L.L., 1993, Microstructures in feldspars from a major crustal thrust zone: the Grenville Front, Ontario, Canada. Journal of Structural Geology, 15, 21-36. https://doi.org/10.1016/0191-8141(93)90076-M
  31. Schmid, S.M. and Casey, M., 1986, Complete fabric analysis of some commonly observed quartz c-axis patterns. Geophysical Monograph, Series 36, 263-286.
  32. Simpson, C., 1985, Deformation of granitic rocks across the brittle-ductile transition. Journal of Structural Geology, 7, 503-511. https://doi.org/10.1016/0191-8141(85)90023-9
  33. Simpson, C. and Schmid, S.M., 1983, An evaluation of criteria to deduce the sense of movement in sheared rocks. Geological Society of America Bulletin, 94, 1281-1288. https://doi.org/10.1130/0016-7606(1983)94<1281:AEOCTD>2.0.CO;2
  34. Son, C.M. and Kim, S.J., 1991, Explanatory text of the geological map of Chunyang sheet (1: 50,000). Geological Survey of Korea, 7p.
  35. Tullis, J. and Yund, R.A., 1980, Hydrolitic weakening of experimentally deformed Westerly granite and Hale albite rock. Journal of Structural Geology, 2, 439-451. https://doi.org/10.1016/0191-8141(80)90005-X
  36. Tullis, J. and Yund, R.A., 1987, Transition from cataclastic flow to dislocation creep of feldspar: mechanisms and microstructures. Geology, 15, 606-609. https://doi.org/10.1130/0091-7613(1987)15<606:TFCFTD>2.0.CO;2
  37. Yanai, S., Park, B.S. and Otoh, S., 1985, The Honam shear zone (S. Korea): deformation and tectonic implication in the Far East. Scientic papers College Arts and Science University of Tokyo, 35, 181-210.
  38. Yun, S.K. and Shin, B.W., 1963, Explanatory text of the geological map of Ulchin sheet (1: 50,000). Geological Survey of Korea, 4p.