DOI QR코드

DOI QR Code

Characteristics of Nd Isotopic Compositions of the Phanerozoic Granitoids of Korea and Their Genetic Significance

한국 현생 화강암류의 Nd 동위원소 조성 특성과 성인적 의미

  • Park, Kye-Hun (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Lee, Tae-Ho (Department of Earth Environmental Sciences, Pukyong National University)
  • 박계헌 (부경대학교 환경해양대학 지구환경과학과) ;
  • 이태호 (부경대학교 환경해양대학 지구환경과학과)
  • Received : 2014.08.05
  • Accepted : 2014.09.04
  • Published : 2014.09.30

Abstract

Nd isotopic compositions analyzed from the Phanerozoic granitoids of Korea are integrated and discussed. Variations in Nd isotopic compositions can be explained either by temporal trend or by regional differences. Among the three active periods, first two periods during the Permian-Triassic and Jurassic seem to show variations from rather high ${\varepsilon}_{Nd}(t)$ values at the beginning to lower ${\varepsilon}_{Nd}(t)$ values during the later stages. Such trends probably reflect melting of the subducting oceanic crust and producing magma with higher proportion of depleted mantle derived materials during the early stage of subduction process, and subsequent magmas with greater proportion of old continental crust with progress of subduction. However, the Cretaceous-Paleogene period of active magmatism displays higher ${\varepsilon}_{Nd}(t)$ values during the advanced stage of the igneous activities, which is opposite to the previous active periods. The other explanation is that such differences in ${\varepsilon}_{Nd}(t)$ reflect regional differences, based on the observations that such high-${\varepsilon}_{Nd}(t)$ granitoids distribute in the northeastern Gyeongbuk Province and Gyeongsang Basin. If this is the case, the regions with highr ${\varepsilon}_{Nd}(t)$ values may have distinct crustal evolution histories, e.g. younger average age. The choice between the two hypothesis could be made through further studies.

한국의 현생 화강암류에서 분석된 Nd 동위원소 자료를 종합하여 고찰해보았다. Nd 동위원소의 변화는 추세적인 변화 또는 지역적인 변화로 설명될 수 있다. 세 차례로 나타나는 화성활동기 중에서 페름기-트라이아스기 그리고 쥬라기에 있었던 두 차례의 화성활동기에서는 초기에는 높은 ${\varepsilon}_{Nd}(t)$ 값을 갖는 마그마가 만들어진 이후에 점차 낮은 ${\varepsilon}_{Nd}(t)$ 값을 갖는 방향으로 변화한 것으로 볼 수 있다. 섭입작용의 시작과 더불어 초기에 생성된 마그마의 경우 섭입된 해양지각의 용융과 같은 결핍맨틀의 함량이 높은 마그마가 생성되고, 섭입작용의 진행과 더불어 마그마의 생성에 오래된 지각물질의 영향이 더욱 커져서 이러한 변화경향을 만들어낸 것이라고 해석할 수 있다. 그러나 백악기-고제3기의 화성활동기에서는 후기의 화성암체들이 오히려 더 높은 ${\varepsilon}_{Nd}(t)$ 값을 갖는, 이전의 화성활동기와는 반대되는 변화경향이 나타난다. 다른 해석으로는 페름기-트라이아스기 활동기 초기의 영덕화강암과 쥬라기 활동기 초기의 청송화강암 등 높은 ${\varepsilon}_{Nd}(t)$ 값의 암체들이 대부분이 경상북도 북부지역에 밀집되어 있기 때문에 이러한 변화가 단순히 지역적인 차이를 반영하는 것이라는 해석도 전적으로 배제할 수는 없다. 이 외에도 백악기-고제3기 활동기에서 높은 ${\varepsilon}_{Nd}(t)$ 값을 갖는 암체인 온정리 화강암 역시 영덕화강암과 인접하여 산출하며, 그 밖의 높은 ${\varepsilon}_{Nd}(t)$ 값을 갖는 화성암들은 주로 경상분지내에서만 산출되는 것 역시 지역적 차이라는 가설을 지지한다고 볼 수 있다. 이 경우 높은 ${\varepsilon}_{Nd}(t)$ 값을 갖는 지역은 다른 지역에 비해 상대적으로 젊은 평균지각 연령을 갖는 등 구분되는 지각진화사를 가질 것으로 판단된다. 이상에서 제기한 두 가설들 사이의 선택은 추가적인 연구를 통해 판단해야 할 것으로 생각된다.

Keywords

References

  1. Barbarin, B., 1999, A review of the relationships between granitoids types, their origins and their geodynamic environments. Lithos, 46, 605-626. https://doi.org/10.1016/S0024-4937(98)00085-1
  2. Chang, H.-W., Turek, A., and Kim, C.-B., 2003, U-Pb zircon geochronology and Sm-Nd-Pb isotopic constraints for Precambrian plutonic rocks in the northeastern part of Ryeongnam massif, Korea. Geochemical Journal, 37, 471-491. https://doi.org/10.2343/geochemj.37.471
  3. Chauvel, C., Lewin, E., Carpentier, M., Arndt, N.T., and Marini, J.-C., 2008, Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array. Nature Geosciences, 1, 64-67. https://doi.org/10.1038/ngeo.2007.51
  4. Cheong, C.-S. and Chang, H-W., 1997, Sr, Nd, and Pb isotope systematics of granitic rocks in the central Ogcheon Belt, Korea. Geochemical Journal, 31, 17-36. https://doi.org/10.2343/geochemj.31.17
  5. Cheong, C.-S. and Kim, N., 2012, Review of radiometric ages for Phanerozoic granitoids in southern Korean peninsula. Journal of the Petrological Society of Korea, 21, 173-192 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2012.21.2.173
  6. Cheong, C.S., Kwon, S.T., Kim, J.M., and Chang, B.U., 1998, Geochemical and isotopic study of the Onjeongri granite in the northern Gyeongsang Basin, Korea: comparison with Cretaceous to Tertiary granitic rocks in the other part of the Gyeongsang Basin and the inner zone of Southwest Japan. Journal of the Petrological Society of Korea, 7, 77-97 (in Korean with English abstract).
  7. Cheong, C.-S., Kwon, S.-T., and Sagong, H., 2002, Geochemical and Sr-Nd-Pb isotopic investigation of Triassic granitoids and basement rocks in the northern Gyeongsang Basin, Korea: implications for the young basement in the east Asian continental margin. Island Arc, 11, 25-44. https://doi.org/10.1046/j.1440-1738.2002.00356.x
  8. Cheong, C.-S., Yi, K., Kim, N., Lee, T.-H., Lee, S.R., Geng, J.-z., and Li, H.-k., 2013, Tracking source materials of Phanerozoic granitoids in South Korea by zircon Hf isotopes. Terra Nova, 25, 228-235. https://doi.org/10.1111/ter.12027
  9. Cheong, W., Kim, Y., and Na, K.-C., 2011, SHRIMP zircon U-Pb geochronology, geochemistry and Sr-Nd isotopic study of the Cheongju granitoid rocks. Journal of the Petrological Society of Korea, 20, 191-206 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2011.20.4.191
  10. Cho, D.-L., Lee, S.R., and Armstrong, R., 2008, Termination of the Permo-Triassic Songrim (Indosinian) orogeny in the Ogcheon belt, South Korea: occurrence of ca. 220 Ma post-orogenic alkali granites and their tectonic implications. Lithos, 105, 191-200. https://doi.org/10.1016/j.lithos.2008.03.007
  11. Hwang, B.-H., Ernst, W.G., and Yang, K., 2012, Two different magma series imply a Palaeogene tectonic transition from contraction to extension in the SE Korean Peninsula. International Geology Review, 54, 1284-1295. https://doi.org/10.1080/00206814.2011.636990
  12. Jahn, B.-m., Wu, F., Capdevila, R., Martineau, F., Zhao, Z., and Wang, Y., 2001, Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China. Lithos, 59, 171-198. https://doi.org/10.1016/S0024-4937(01)00066-4
  13. Jeong, Y.-J., Cheong, C.-S., Park, C.-Y., and Shin, I.-H., 2008, Geochemistry, isotope properties and U-Pb sphene age of the Jeongeup foliated granit, Korea. Journal of the Korean Earth Science Society, 29, 539-550 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2008.29.7.539
  14. Jwa, Y.-J., 2008, A preliminary study on granite suite and supersuite for the Jurassic granites in south Korea. Journal of the Petrological Society of Korea, 17, 222-230 (in Korean with English abstract).
  15. Jwa, Y.-J., Kim, J.-S., and Kim, K.-K., 2005, Granite suite and supersuite for the Triassic granites in south Korea. Journal of the Petrological Society of Korea, 14, 226-236 (in Korean with English abstract).
  16. Jin, M.S., 1980, Geological and isotopic contrasts of the Jurassic and the Cretaceous granites in south Korea. Journal of the Geological Society of Korea, 16, 205-215.
  17. Kee, W.-S., Kim, S.W., Jeong, Y.-J., and Kwon, S., 2010, Characteristics of Jurassic continental arc magmatism in South Korea: tectonic implications. The Journal of Geology, 118, 305-323. https://doi.org/10.1086/651503
  18. Kim, C.-B., Chang, H.-W., and Turek, A., 2003, U-Pb zircon ages and Sr-Nd-Pb isotopic compositions for Permian- Jurassic plutons in the Ogcheon belt and Ryeongnam massif, Korea: tectonic implications and correlation with the China Qinling-Dabie belt and the Japan Hida belt. Island Arc, 12, 366-382. https://doi.org/10.1046/j.1440-1738.2003.00404.x
  19. Kim, C.-S. and Kim, G.-S., 1997, Petrogenesis of the early Tertiary A-type Namsan alkali granite in the Kyongsang Basin, Korea. Geosciences Journal, 1, 99-107. https://doi.org/10.1007/BF02910481
  20. Kim, C.-B. and Turek, A., 1996, Advances in U-Pb zircon geochronology of Mesozoic plutonism in the southwestern part of Ryeongnam massif, Korea: Geochem. J., 30, 323-338. https://doi.org/10.2343/geochemj.30.323
  21. Kim, J., Yi, K., Jeong, Y.-J., and Cheong, C.-S., 2011, Geochronological and geochemical constraints on the petrogenesis of Mesozoic high-K granitoids in the central Korean peninsula. Gondwana Research, 20, 608-620. https://doi.org/10.1016/j.gr.2010.12.005
  22. Kim, J.H., Cheong, C.-S., Son, Y.C., and Koh, H.J., 1997, Geology and Sr, Nd and Pb isotopic compositions of Precambrian granitoids in the Pyeongchang area, Korea. Journal of the Geological Society of Korea, 33, 27-35 (in Korean with English abstract).
  23. Kim, J.-S., Park, M.-E., and Kim, G.-S., 1998, A geochemical study of the alkali granite in the Kyeomyeongsan Formation. Economic and Environmental Geology, 31, 349-360.
  24. Kim, K.H., Park, S.S., and Na, C.K., 1996, Nd and Sr isotopic signatures of Mesozoic granitoids in South Korea. Resource Geology, 46, 215-226.
  25. Kim, S.W., Lee, C.Y., and Ryu, I.-C., 2008, Geochemical and Nd-Sr isotope studies for foliated granitoids and mylonitized gneisses from the Myeongho area in northeast Yecheon shear zone. Economic and Environmental Geology, 41, 299-314 (in Korean with English abstract).
  26. Kim, S.W., Kwon, S., Ryu, I.-C., Jeong, Y.-J., Choi, S.-J., Kee, W.-S., Yi, K., Lee, Y.S., Kim, B.C., and Park, D.W., 2012, Characteristics of the Early Cretaceous igneous activity in the Korean peninsula and tectonic implications. The Journal of Geology, 120, 625-646. https://doi.org/10.1086/667811
  27. Kim, S.W., Kwon, S., Koh, H., Yi, K., Jeong, Y.J., and Santosh, M., 2011, Geotectonic framework of Permo-Triassic magmatism within the Korean peninsula. Gondwana Research, 20, 865-889. https://doi.org/10.1016/j.gr.2011.05.005
  28. Kim, Y.-J., Cho, D.-L., and Lee, C.-S., 1998, Petrology, geochemistry and tectonic of the A-type Daegang granite in the Namwon area, Southwestern part of the Korean peninsula. Economic and Environmental Geology, 31, 399-413 (in Korean with English abstract).
  29. Kwon, S.-T., Lan, C.-Y., and Lee, T., 1999, Rb-Sr and Sm- Nd isotopic study of the Seoul granitic batholith in middle Korea. Geosciences Journal, 3, 107-114. https://doi.org/10.1007/BF02914266
  30. Lee, J.I., Jwa, Y.-J., Park, C.-H., Lee, M.J., Moutte, J., and Kagami, H., 1999, Sr and Nd isotopic compositions of late Paleozoic Younju and Andong granites in the northeastern Yeongnam massif, Korea. Geochemical Journal, 33, 153-165. https://doi.org/10.2343/geochemj.33.153
  31. Lee, S.-G., Asahara, Y., Tanaka, T., Kim, N.H., Kim, K.H., Yi, K., Masuda, A., and Song, Y.S., 2010b, La-Ce and Sm-Nd isotopic systematics of early Proterozoic leucogranite with tetrad REE pattern. Chemical Geology, 276, 360-373. https://doi.org/10.1016/j.chemgeo.2010.07.003
  32. Lee, S.-G., Masuda, A., Shimizu, H., and Song, Y.-S., 2001, Crustal evolution history of Korean Peninsula in east Asia: the significance of Nd, Ce isotopic and REE data from the Korean Precambrian gneisses. Geochemical Journal, 35, 175-187 https://doi.org/10.2343/geochemj.35.175
  33. Lee, S.-G., Kim, T.K., and Lee, T., 2011, Rare earth element, Sm-Nd and Rb-Sr age and its geochemical implication of leucogranite in the Deokgu hot spring area, Yeongnam massif, Korea. Journal of the Petrological Society of Korea, 20, 207-217 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2011.20.4.207
  34. Lee, S.-G., Kim, Y., and Kim, K.-H., 2005a, Geochemistry and Sm-Nd isotope systmematics of Precambrian granitic gneiss and amphibolite core at the Muju area, middle Yeongnam massif. Journal of the Petrological Society, 14, 127-140 (in Korean with English abstract).
  35. Lee, S.-G., Shimizu, H., Masuda, A., and Song, Y.-S., 1992, Crustal evolution of the Precambrian basement in the Korean Peninsula. Journal of the Petrological Society of Korea, 1, 124-131.
  36. Lee, S.-G., Shin, S.-C., Jin, M.-S., Ogasawara, M., and Yang, M.K., 2005b, Two Paleoproterozoic strongly peraluminous granitic plutons (Nonggeori and Naedeokri granites) at the northeastern part of Yeongnam massif, Korea: geochemical and isotopic constraints in east Asian crustal formation history. Precambrian Research, 139, 101-120. https://doi.org/10.1016/j.precamres.2005.06.006
  37. Lee, S.-G., Shin, S.-C., Kim, K.-H., Lee, T., Koh, H., and Song, Y.-S., 2010a, Petrogenesis of three Cretaceous granites in the Okcheon metamorphic belt, south Korea: geochemical and Nd-Sr-Pb isotopic constraints. Gondwana Research, 17, 87-101. https://doi.org/10.1016/j.gr.2009.04.012
  38. Na, C.-K., Lee, I.-S. and Chung, J.-I., 1997, Petrogenetic study on the foliated granitoids in the Chonju and the Sunchang area (II) -in the light of Sr and Nd isotopic properties- Econ. Environ. Geology, 30, 249-261 (in Korean with English abstract).
  39. Park, B.-K., 1972, Whole-rock rubidium-strontium age of the Seoul granite. Journal of the Geological Society of Korea, 8, 156-161.
  40. Park, K.-H., 2012, Cyclic igneous activities during the Paleozoic to Early Cenozoic period over the Korean peninsula. Journal of the Petrological Society of Korea, 21, 193-202 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2012.21.2.193
  41. Park, K.-H., Lee, H.-S. and Cheong, C.-S., 2005, Sphene UPb ages of the granodiorites from Gimcheon, Seoungju and Anui areas of the middle Yeongnam massif. Journal of the Petrological Society of Korea, 14, 1-11 (in Korean with English abstract).
  42. Park, K.-H., Lee, H.-S., Song, Y.-S. and Cheong, C.-S., 2006, Sphene U-Pb ages of the granite-granodiorites from Hamyang, Geochang and Yeongju areas of the middle Yeongnam massif. Journal of the Petrological Society of Korea, 15, 39-48 (in Korean with English abstract).
  43. Park, K.-H., Song, Y.-S., Park, M.-E., Lee, S.-G., and Ryu, H.-J., 2000, Petrological, geochemical and geochronological studies of Precambrian basement in northeast Asia Region: 1. Age of the metamorphism of Jirisan area. Journal of the Petrological Society of Korea, 9, 29-39 (in Korean with English abstract).
  44. Park, Y.R., 2009, Enriched geochemical and Sr-Nd isotopic characteristics of Middle Triassic plutonic rocks in Hudongri, Chuncheon: derivation from enriched mantle. Journal of the Petrological Society of Korea, 18, 255-267 (in Korean with English abstract).
  45. Park, Y.S., Kim, S.W., Kee, W.-S., Jeong, Y.-J., Yi, K., and Kim, J., 2009, Middle Jurassic tectono-magmatic evolution in the southwestern margin of the Gyeonggi massif, South Korea. Geosciences Journal, 13, 217-231. https://doi.org/10.1007/s12303-009-0022-4
  46. Shin, I.-H. and Kagami, H., 1996, Rb-Sr isochron ages, Sr and Nd isotopic compositions of granophyre in the Haenam- Wando areas, Korea. Economic and Environmental Geology, 29, 151-158 (in Korean with English abstract).
  47. Shin, I.-H., Kim, H.-N., and Ahn, K.-S., 1997, Origin of granitoids in the southwestern part of Korea based on Sr, Nd isotopic ratio. Journal of the Korean Earth Science Society, 18, 99-104 (in Korean with English abstract).
  48. Shin, I.-H., Park, Y.-S., Park, C.-Y., Jeong, Y.-J., and Iizumi, S., 1998, Petrochemistry and Sr.Nd isotopic compositions of Boeun granite, Korea. Journal of the Korean Earth Science Society, 19, 632-640 (in Korean with English abstract).
  49. Shin, I.-H., Park, Y.-S., Park, C.-Y., Jeong, Y.-J., and Iizumi, S., 1999, Petrochemistry and Sr.Nd isotopic compositions of hornblende-biotite granodiorite in the Cheongsan area, Korea. Journal of the Korean Earth Science Society, 20, 156-165 (in Korean with English abstract).
  50. Shin, I.-H., Park, C.-Y., and Jeong, Y.-J., 2001, Petrochemistry and Sr.Nd isotopic compositions of foliated granite in the Jeonju area, Korea. Journal of the Korean Earth Science Society, 22, 1-9 (in Korean with English abstract).
  51. Wee, S.M., Choi, S.G., Ryu, I.C., and Shin, H.J., 2006, Geochemical Characteristics of the Cretaceous Jindong Granites in the Southwestern Part of the Gyeongsang Basin, Korea: Focussed on Adakitic Signatures. Economic and Environmental Geology, 39, 555-566.
  52. Williams, I.S., Cho, D.-L., and Kim, S.W., 2009, Geochronology, and geochemical and Nd-Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi massif, south Korea: constraints on Triassic post-collisional magmatism. Lithos, 107, 239-256. https://doi.org/10.1016/j.lithos.2008.10.017
  53. Yi, K., Cheong, C.-s., Kim, J., Kim, N., Jeong, Y.-J., and Cho, M., 2012, Late Paleozoic to Early Mesozoic arcrelated magmatism in southeastern Korea: SHRIMP zircon geochronology and geochemistry. Lithos, 153, 129-141. https://doi.org/10.1016/j.lithos.2012.02.007
  54. Zhu, D.-C., Zhao, Z.-D., Pan, G.-T., Lee, H.-Y., Kang, Z.- Q., Liao, Z.-L.,Wang, L.-Q., Li, G.-M., Dong, G.-D., and Liu, B., 2009, Early Cretaceous subduction-related adakite- like rocks of the Gandese belt, southern Tibet: products of slab melting and subsequent melt-peridotite interaction? Journal of Asian Earth Sciences, 34, 298-309. https://doi.org/10.1016/j.jseaes.2008.05.003

Cited by

  1. Contrasting source domains for the Phanerozoic granitoids in South Korea revealed by zircon Hf isotopic signatures vol.20, pp.5, 2016, https://doi.org/10.1007/s12303-016-0028-7
  2. 2014, Application of Geochronological and Isotopic Data vol.23, pp.3, 2014, https://doi.org/10.7854/JPSK.2014.23.3.163
  3. Petrogenesis of Mesozoic granites at Garorim Bay, South Korea: evidence for an exotic block within the southwestern Gyeonggi massif? pp.1598-7477, 2019, https://doi.org/10.1007/s12303-018-0031-2