DOI QR코드

DOI QR Code

Iron Containing Superoxide Dismutase of Streptomyces subrutilus P5 Increases Bacterial Heavy Metal Resistance by Sequestration

Streptomyces subrutilus P5의 철 함유 Superoxide Dismutase의 중금속 격리에 의한 세균의 중금속 저항성 증가

  • Kim, Jae-Heon (Department of Microbiology, Dankook University) ;
  • Han, Kwang Yong (Department of Microbiology, Dankook University) ;
  • Jung, Ho Jin (Department of Microbiology, Dankook University) ;
  • Lee, Jungnam (Department of Periodontology and Oral Biology, University of Florida)
  • 김재헌 (단국대학교 자연과학대학 미생물학과) ;
  • 한광용 (단국대학교 자연과학대학 미생물학과) ;
  • 정호진 (단국대학교 자연과학대학 미생물학과) ;
  • 이정남
  • Received : 2014.08.19
  • Accepted : 2014.09.17
  • Published : 2014.09.30

Abstract

Mitigation of heavy metal toxicity by iron containing superoxide dismutase (FeSOD) of Streptomyces subrutilus P5 was investigated. For E. coli $DH5{\alpha}$, the survival rate in the presence of 0.1 mM lead ions was only 7% after 120 min; however, with the addition of $0.1{\mu}M$ of purified native FeSOD the survival rate increased to 39%. This detoxification effect was also shown with 0.01 mM copper ions (survival increased from 6% to 50%), and the effect was stronger than with the use of EDTA. E. coli M15[pREP4] producing 6xHis-tagged FeSOD was constructed, and this showed an increase in survival rates throughout the incubation time; in the presence of 0.1 mM lead ions,the final increase at 60 min was from 3% to 19%. The FeSOD absorbed about 123 g-atom lead per subunit; therefore, we suggest that FeSOD could sequestrate toxic heavy metals to enhance bacterial survival against heavy metal contamination.

Streptomyces subrutilus P5가 생산하는 철 함유 superoxide dismutase (FeSOD)에 의한 중금속 독성의 완화를 조사하였다. 0.1 mM의 납이온이 120분 처리되면 E. coli $DH5{\alpha}$의 생존율이 7%에 불과 하지만 $0.1{\mu}M$의 정제된 천연 FeSOD가 첨가되면 생존율이 39%로 높아졌다. 이러한 해독작용은 0.01 mM의 구리이온에 대해서도 나타나며(생존율이 6%에서 50%로 증가) 그 효과는 EDTA보다 강하였다. 6xHis-tagged FeSOD를 생산하는 재조합 E. coli M15[pREP4]는 0.1 mM의 납 이온이 60분 처리된 후의 생존율이 3%에서 19%로 증가하였다. 6xHis-tagged FeSOD는 분자당 123개의 납과 결합하였다. 따라서 FeSOD가 중금속을 세포와의 접촉으로부터 격리함으로써 중금속이 오염된 환경에서 세균의 생존력을 증가시킨 것으로 사료된다.

Keywords

References

  1. Banjerdkij, P., Vattanaviboon, P., and Mongkolsuk, S. 2005. Exposure to cadmium elevates expression of genes in the OxyR and OhrR regulons and induces cross-resistance to peroxide killing treatment in Xanthomonas campestris. Appl. Environ. Microbiol. 71, 1843-1849. https://doi.org/10.1128/AEM.71.4.1843-1849.2005
  2. Beauchamp, C. and Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
  3. Bebien, M., Lagnie, G., Garin, J., Touati, D., Vermeglio, A., and Labarre, J. 2002. Involvement of superoxide dismutases in the response of Escherichia coli to selenium oxides. J. Bacteriol. 184, 556-1564. https://doi.org/10.1128/JB.184.2.556-563.2002
  4. Bruins, M.R., Kapil, S., and Oehme, F.W. 2000. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf. 45, 198-207. https://doi.org/10.1006/eesa.1999.1860
  5. Capasso, C., Nazzaro, F., Marulli, F., Capasso, A., La Cara, F., and Parisi, E. 1996. Identification of a high-molecular-weight cadmium-binding protein in copper-resistant Bacillus acidocaldarius cells. Res. Microbiol. 147, 287-296. https://doi.org/10.1016/0923-2508(96)81389-1
  6. Duruibe, J.O., Ogwuegbu, M.O.C., and Egwurugwu, J.N. 2007. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2, 112-118.
  7. Eickhoff, J., Potts, E., Valtos, J., and Niederhoffer, E.C. 1995. Heavy metal effects on Proteus mirabilis superoxide dismutase production. FEMS Microbiol. Lett. 132, 271-276. https://doi.org/10.1111/j.1574-6968.1995.tb07845.x
  8. Festa, R.A. and Thiele, D.J. 2011. Copper: An essential metal in biology. Curr. Biol. 21, R877-R883. https://doi.org/10.1016/j.cub.2011.09.040
  9. Geslin, C., Llanos, J., Prieur, D., and Jeanthon, C. 2001. The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity. Res. Microbiol. 152, 901-905. https://doi.org/10.1016/S0923-2508(01)01273-6
  10. Howlett, N.G. and Avery, S.V. 1997. Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae & influence of plasma membrane fatty acid unsaturation. Appl. Environ. Microbiol. 63, 2971-2976.
  11. Li, C., Li, Z., Li, Y., Zhou, J., Zhang, C., Su, X., and Li, T. 2012. A ferritin from Dendrorhynchus zhejiangensis with heavy metals detoxification activity. PLoS ONE 7, e51428. https://doi.org/10.1371/journal.pone.0051428
  12. Liu, D., Li, Z., Li, W., Zhong, Z., Xu, J., Ren, J., and Ma, Z. 2013.Adsorption behavior of heavy metal ions from aqueous solution by soy protein hollow microspheres. Ind. Eng. Chem. Res. 52, 11036-11044. https://doi.org/10.1021/ie401092f
  13. Mamtani, R., Stern, P., Dawood, I., and Cheema, S. 2011. Metals and disease: A global primary health care perspective. J. Toxicol. 2011, 1-11.
  14. Mejare, M. and Bulow, L. 2001. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol. 19, 67-73. https://doi.org/10.1016/S0167-7799(01)00012-9
  15. Pitcher, D.G., Saunders, N.A., and Owen, R.J. 1989. Rapid extraction of bacterial genomic DNA with guannidium thiocyanate. Lett. Appl. Microbiol. 8, 151-156. https://doi.org/10.1111/j.1472-765X.1989.tb00262.x
  16. Priya, B., Premanandh, J., Dhanalakshmi, R.T., Seethalakshmi, T., Uma, L., Prabaharan, D., and Subramanian, G. 2007. Comparative analysis of cyanobacterial superoxide dismutases to discriminate canonical forms. BMC Genomics 8, 435-445. https://doi.org/10.1186/1471-2164-8-435
  17. Rho, J.Y. and Kim, J.H. 2002. Heavy metal biosorption and its significance to metal tolerance of Streptomycetes. J. Microbiol. 40, 51-54.
  18. So, N., Rho, J., Lee, S., Hancock, I.C., and Kim, J. 2001. A lead-absorbing protein with superoxide dismutase activity from Streptomyces subrutilus. FEMS Microbiol. Lett. 194, 93-98. https://doi.org/10.1111/j.1574-6968.2001.tb09452.x
  19. Sumner, E.R., Shanmuganathan, A., Sideri, T.C., Willetts, S.A., Houghton, J.E., and Avery, S.V. 2005. Oxidative protein damage causes chromium toxicity in yeast. Microbiology 151, 1939-1948. https://doi.org/10.1099/mic.0.27945-0
  20. Theil, E.C. 2003. Ferritin: at the crossroads of iron and oxygenmetabolism. J. Nutr. 133, 1549S-1553S. https://doi.org/10.1093/jn/133.5.1549S
  21. Touati, D. 2000. Iron and oxidative stress in bacteria. Arch. Biochem. Biophys. 373, 1-6. https://doi.org/10.1006/abbi.1999.1518
  22. Turner, J.S. and Robinson, N.J. 1995. Cyanobacterial metallothioneins: biochemistry and molecular genetics. J. Ind. Microbiol. 14, 119-125. https://doi.org/10.1007/BF01569893

Cited by

  1. Secretion of the iron containing superoxide dismutase of Streptomyces subrutilus P5 vol.51, pp.2, 2015, https://doi.org/10.7845/kjm.2015.5019
  2. Comparison of enzyme activities of the native and N-terminal 6xHis-tagged Fe supreoxide dismutase from Streptomyces subrutilus P5 vol.52, pp.2, 2016, https://doi.org/10.7845/kjm.2016.6030
  3. Heavy metal toxicity mitigation by iron-containing superoxide dismutase 2 of Streptomyces coelicolor A3(2) vol.53, pp.2, 2014, https://doi.org/10.7845/kjm.2017.7013