DOI QR코드

DOI QR Code

Morphological Characteristics of Weed Seed Fibers

잡초 종자섬유의 형태적 특징 비교

  • Yoon, A Ra (Research Center for Bio-based Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology) ;
  • Lee, Min Woo (Research Center for Bio-based Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology) ;
  • Kim, Seul Ki (Research Center for Bio-based Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Seog (Research Center for Bio-based Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology)
  • 윤아라 (한국화학연구원 융합화학연구본부 바이오화학연구센터) ;
  • 이민우 (한국화학연구원 융합화학연구본부 바이오화학연구센터) ;
  • 김슬기 (한국화학연구원 융합화학연구본부 바이오화학연구센터) ;
  • 김진석 (한국화학연구원 융합화학연구본부 바이오화학연구센터)
  • Received : 2014.07.30
  • Accepted : 2014.09.02
  • Published : 2014.09.30

Abstract

In this study, to obtain basic data for searching potential resources as new natural fibers, we investigated morphological and classificatory characteristics of 21 weed seed fibers. According to classification keys in this study, the collected weed seed fibers could be classified into total 13 types, showing their diversity. Seven species among them belonged to BOT3 type. Two species belonged to B2N0 and DOS3 type, respectively. Many of weed seed fibers had not branched. However, three species had various branched fibers at one main fibers on the seed. Three species had various branched fibers at several main fibers on the seed. Eight species had a smooth fiber surface but 13 species had a weakly or significantly developed-corniculum on the fiber surface. In the fiber cell shape, fiber cells of eight weed species were composed of one long cell without septum. But others had a fiber cell shape composed of a bunch of several long cells. Based on the easiness of harvesting, productivity of fibers, and morphological characteristics of seed fiber, it seemed that five seed fibers (TYPLA, METJA, HEMLY, IMPCK, and EREHI) should be additionally investigated if they are practically applicable as renewable resources for new natural fibers.

최근 화석 자원의 의존성을 경감시키자는 차원에서 천연섬유에 대한 관심이 연구계 및 산업계에서 새롭게 대두되고 있다. 본 연구는 잡초중에서 새로운 천연섬유로서 이용될만한 자원을 탐색하기 위한 기초자료를 얻기 위하여 21종의 잡초종자 섬유를 수집하여 이들의 형태적 또는 분류적 특징을 조사하였다. 본 연구에서 설정한 분류지표에 따라 분류해 보았을 때 총 13가지 유형으로 나뉘어져(A0T3, A0S3, B0N0, B1N0, B2N0, B2N1, B0S3, B0T3, C0N0, C1N0, D0N0, D0S3, E1T3) 각 종자마다 독특한 특징의 섬유를 가지고 있음을 알 수 있었으며, 서로 유사한 특징을 보여 그룹화 할 수 있었던 종은 B0T3 type으로서 붉은서나물, 방가지똥, 큰방가지똥, 개쑥갓, 벌씀바귀, 보리뺑이, 솜방망이 등이 있었고, D0S3 type으로서 강아지풀, 수크령이 있었고, B2N0 type으로서 조뱅이와 엉겅퀴가 있었다. 섬유의 분지 유무을 보았을 때, 분지없이 한가닥의 섬유가 밀생하여 존재하는 것이 대부분이었고, 한 개의 주경에 여러개의 섬유가 분지되어 존재하는 것으로서 사위질빵과 큰부들이 있었다. 특이하게도 지칭개는 여러 개의 주경에 여러 개의 섬유가 분지되어 존재하는 특징을 보였다. 또한 섬유 표면에 피침형 돌기 발생 정도를 보았을 때, 피침형 돌기 없이 매끄러운 형태를 지니는 것은 지칭개, 박주가리, 물억새, 띠, 사위질빵 등이었고 나머지는 피침형 돌기가 미약하게 존재하거나 피침형 돌기가 현저하게 발달한 것들이었다. 섬유 구성세포 형태의 경우, 세포 격막 없이 한 개의 장세포로 이루어진 종들로서는 지칭개, 박주가리, 물억새, 띠, 사위질빵 등이 있었고, 나머지는 두개이상의 장세포가 다발로 뭉쳐 있는 특징을 보였다. 전반적으로 수집의 용이성, 생산성, 종자섬유의 물적 성질들을 볼 때 향후 실용화 가능성이 있을 것으로 여겨져 추가 검토가 필요한 잡초 종은 붉은서나물, 띠, 지칭개, 박주가리, 큰부들 등 이었다.

Keywords

References

  1. Akkol, E.K., Suntar, I., Keles, H. and Yesilada, E. 2011. The potential role of female flowers inflorescence of Typha domingensis Pers. in wound management. J. Ethnopharmacol. 133:1027-1032. https://doi.org/10.1016/j.jep.2010.11.036
  2. Chen, G. 2011. Seed and seed fibers in fruit of Metaplexis japonica used in health-care fabrics or quilt fabrics. China. Patent No. Peop. Rep. CN102286797A.
  3. Faruk, O., Bledzki, A.K., Fink, H. P. and Sain, M. 2012. Biocomposites reinforced with natural fibers: 2000-2010. Prog. Polym. Sci. 37:1552-1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003
  4. Fiore, V., Scalici, T. and Valenza, A. 2014. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydr. Polym. 106:77-83. https://doi.org/10.1016/j.carbpol.2014.02.016
  5. Helbert, W., Cavaille, J.Y. and Dufresne, A. 1996. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. J. Polym. Compos. 17:604-611. https://doi.org/10.1002/pc.10650
  6. Indran, S., Raj, R.E. and Sreenivasan, V.S. 2014. Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydr. Polym. 110:423-429. https://doi.org/10.1016/j.carbpol.2014.04.051
  7. Jahan, M.S., Islam, M.K., Chowdhury, D.A.N., Moeiz, S.M.I. and Arman, U. 2007. Pulping and papermaking properties of pati (Typha). Ind. Crops Prod. 26:259-264. https://doi.org/10.1016/j.indcrop.2007.03.014
  8. Katri, S.P. 2001. Non-wood plants as raw material for pulp and paper. PhD Diss., Republic of finiand. University of Helsinki. (Diss. Abstr. 18-24)
  9. Keijsers, E.R.P., Yilmaz, G. and Van Dam, J. E.G. 2013. The cellulose resource matrix. Carbohydr. Polym. 93:9-21. https://doi.org/10.1016/j.carbpol.2012.08.110
  10. Khristova, P. and Tissot, M. 1995. Soda-anthraquinone pulping of Hibiscus sabdariffa (karkadeh) and Calotropis procera from Sudan. Bioresour. Technol. 53(1):67-72. https://doi.org/10.1016/0960-8524(95)00067-O
  11. Kim, D.S. and Park, S.H. 2009. Weeds of Korea - Morphology, physiology, ecology. Rijeon Agricutural Resources Publications, Seoul, Korea. (In Korean)
  12. Kim, T.G., Lee, S.E., Park, B.S. and Son, M.K. 2010. Method and medium for the production of bioethanol using Genus Typha L. KR 2010-0059406. (In Korean)
  13. Klemm, D., Kramer, F., Moritz, S., Lindstrom, T., Ankerfors, M., Gray, D. and Dorris, A. 2011. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. 50:5438-5466. https://doi.org/10.1002/anie.201001273
  14. Lavoie, M.C. 2012. Renewable oil absorbent and method thereof. US 20120111797 A.
  15. Maity, S., Mohapatra, H.S. and Chatterjee, A. 2014. New generation natural fiber - akund floss. Melliand Int. 20(1):22-24.
  16. Mohanty, A.K., Misra, M. and Hinrichsen, G. 2000. Biofibers, biodegradable polymers and biocomposites: An overview. Macrom. Mater. Eng. 266/277:1-24.
  17. Morais, J.P.S., Rosa, M.F., Filho, M.M.S., Nascimento, L.D., Nascimento, D.M. and Cassales, A.R. 2013. Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr. Polym. 91:220-235.
  18. Mudit, C. 1998. Use of nonwood plant fibers for pulp and paper industry in Asia : Potential in China, Degree Paper, Virginia Polytechnic Institute and State University. pp. 62-63.
  19. Pandey, J. K., Ahn, S. H., Lee, C. S., Mohanty, A. K. and Misra, M. 2010. Recent advances in the application of natural fiber based composites. Macrom. Mater. and Eng. 295:975-989. https://doi.org/10.1002/mame.201000095
  20. Reddy M.M., Vivekanandhan, S., Misra, M., Bhatia, S.K. and Mohanty, A.K. 2013. Biobased plastics and bionanocomposites: Current status and future opportunities. Prog. Polym. Sci. 38:1653-1689. https://doi.org/10.1016/j.progpolymsci.2013.05.006
  21. Saravanakumar, S.S., Kumaravel, A., Nagarajan, T., Sudhakar, P. and Baskaran, R. 2013. Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydr. Polym. 92:1928-1933. https://doi.org/10.1016/j.carbpol.2012.11.064
  22. Seo, Y.-B., Lee, M.W., Lee, S.U. and Park, B.S. 2013. Method for manufacturing bundle of bulrush fibers, and composite biomaterial using same. WO2013/009115 A9.
  23. Seo Y.-B., Lee, Y.-W., Lee, C.-H. and You, H.-C. 2010. Red algae and their use in papermaking. Bioresour. Technol. 101:2549-2553. https://doi.org/10.1016/j.biortech.2009.11.088
  24. Siqueira, G., Bras, J. and Dufresne, A. 2010. Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers 2:728-765. https://doi.org/10.3390/polym2040728
  25. Thakur, V.K. and Thakur, M.K. 2014. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr. Polym. 109:102-117. https://doi.org/10.1016/j.carbpol.2014.03.039
  26. Vinson, K.D. and Franklin, T.J. 2010. Individualized seed hairs and products employing same. US 7691472 B2.
  27. Wang, Q., Xu, G. and Wang, F. 2010. Adsorption property to oil of cattail fiber. Donghua Daxue Xuebao, Ziran Kexueban. 36(1):26-29.
  28. Wuzella, N., Mahendran, A.R., Batge, T., Jury, S. and Kandelbauer, A. 2011. Novel, binder-free fiber reinforced composites based on a renewable resource from the reed-like plant Typha sp. Ind. Crops Prod. 33(3):683-689. https://doi.org/10.1016/j.indcrop.2011.01.008

Cited by

  1. Spring Green-up and Winter Leaf Discoloration of Three Ornamental Grasses (Gramineae spp.) vol.4, pp.1, 2015, https://doi.org/10.5660/WTS.2015.4.1.49
  2. Chemical and Physical Characteristics of Four Weed Seed Fibers (Hemistepta lyrata, Imperata cylindrica var. koenigii, Metaplexis japonica and Typha latifolia) vol.3, pp.4, 2014, https://doi.org/10.5660/WTS.2014.3.4.253