DOI QR코드

DOI QR Code

Weed Population Dynamics under Climatic Change

  • Bir, Md. Shahidul Haque (Department of Crop Science, Chungnam National University) ;
  • Eom, Min Yong (Department of Crop Science, Chungnam National University) ;
  • Uddin, Md. Romij (Department of Agronomy, Bangladesh Agricultural University) ;
  • Park, Tae Seon (National Institute of Crop Science, RDA) ;
  • Kang, Hang Won (National Institute of Crop Science, RDA) ;
  • Kim, Do Soon (College of Agricultural and Life Sciences, Seoul National University) ;
  • Park, Kee Woong (Department of Crop Science, Chungnam National University)
  • Received : 2014.09.01
  • Accepted : 2014.09.11
  • Published : 2014.09.30

Abstract

This paper provides some of the scientific background on how projected environmental conditions could affect weeds and weed management in crops. Elevated $CO_2$ levels may have positive effects on crop competitiveness with $C_4$ weeds, but these are generally outnumbered by $C_3$ species in weed populations. Moreover, higher temperatures and drought will favor $C_4$ over $C_3$ plants. The implementation of climate change adaptation technologies, such as drought-tolerant germplasm and water-saving irrigation regimes, will have consequences for crop-weed competition. Rainfed production systems are thought to be most vulnerable to the direct effects of climate change and are likely to face increased competition from $C_4$ and parasitic weeds. Biotic stress-tolerant crop cultivars to be developed for these systems should encompass weed competitiveness and parasitic-weed resistance. In irrigated systems, indirect effects will be more important and weed management strategies should be diversified to lessen dependency on herbicides and mechanical control, and be targeted to perennial rhizomatous ($C_3$) weeds. Water-saving production methods that replace a weed-suppressive floodwater layer by intermittent or continuous periods of aerobic conditions necessitate additional weed management strategies to address the inherent increases in weed competition. Thus, climatic conditions have a great effect on weed population dynamics all over the world.

Keywords

References

  1. Alberto, A.M.P., Ziska, L.H., Cervancia, C.R. and Manalo, P.A. 1996. The influence of increasing carbon dioxide and temperature on competitive interactions between a $C_3$ crop, rice (Oryza sativa) and a $C_4$ weed (Echinochloa glabrescens). Aust. J. Plant Physiol. 23(6):795-802. https://doi.org/10.1071/PP9960795
  2. Asch. F., Dingkuhn, M., Sow, A. and Audebert, A. 2005. Droughtinduced changes in rooting patterns and assimilate partitioning between root and shoot in upland rice. Field Crop Res. 93(2):223-236. https://doi.org/10.1016/j.fcr.2004.10.002
  3. Auld, B.A. 2004. The persistence of weeds and their social impact. Int. J. Social Eco. 31(9): 879-886. https://doi.org/10.1108/03068290410550665
  4. Bailey, S.W. 2004. Climate change and decreasing herbicide persistence. Pest Manag. Sci. 60(2):158-162. https://doi.org/10.1002/ps.785
  5. Baker, H.G. 1965. Characteristics and modes of origin of weeds. In: H. G. Baker and G. L. Stebbins (Eds.), The Genetics Colonizing Species. pp. 147-72. Academic Press, New York, USA.
  6. Barrett, C.B., Moser, C.M., McHugh, O.V. and Barison, J. 2004. Better technology, better plots, or better farmers? Identifying changes in productivity and risk among Malagasy rice farmers. Am. J. Agr. Econ. 86(4):869-888. https://doi.org/10.1111/j.0002-9092.2004.00640.x
  7. Bazzaz, F.A. and Carlson, R.W. 1984. The response of plants to elevated $CO_2$. 1. Competition among an assemblage of annuals at 2 levels of soil-moisture. Oecologia. 62(2):196-198. https://doi.org/10.1007/BF00379013
  8. Bjorkman, O. 1976. Adaptive and genetic aspects of $C_4$ photosynthesis. pp. 287-309. In: Burris RH and Black CC eds. Metabolism and Plant Productivity. University Park Press, Baltimore, MD, USA.
  9. Boese, S.R., Wolfe, D.W. and Melkonian, J.J. 1997. Elevated $CO_2$ mitigates chilling-induced water stress and photosynthetic reduction during chilling. Plant Cell Environ. 20(5):625-632. https://doi.org/10.1111/j.1365-3040.1997.00082.x
  10. Bouma, J., Varallyay, G. and Batjes, N.H. 1998. Principal land use changes anticipated in Europe. Agr. Ecosyst. Environ. 67(2):103-119. https://doi.org/10.1016/S0167-8809(97)00109-6
  11. Bunce, J.A. 2000. Acclimation of photosynthesis to temperature in eight cool and warm climate herbaceous $C_3$ species: Temperature dependence of parameters of a biochemical photosynthesis model. Photosynthetic Res. 63(1):59-67. https://doi.org/10.1023/A:1006325724086
  12. Cater, D.R. and Peterson, K.M. 1983. Effects of a $CO_2$-enriched atmosphere on the growth and competitive interaction of a $C_3$ and a $C_4$ grass. Oecologia. 58(2):188-93. https://doi.org/10.1007/BF00399215
  13. Chloupek, O., Hrstkova, P. and Schweigert, P. 2004. Yield and its stability, crop diversity, adaptability and response to climate change, weather and fertilisation over 75 years in the Czech Republic in comparison to some European countries. Field Crop Res. 85(2):167-190. https://doi.org/10.1016/S0378-4290(03)00162-X
  14. Cochrane, V. and Press, M.C. 1997. Geographical distribution and aspects of the ecology of the hemiparasitic angiosperm Striga asiatica (L.) Kuntze: A herbarium study. J. Trop. Ecol. 13(3):371-380. https://doi.org/10.1017/S0266467400010579
  15. CRC Australian Weed Management. 2008. Briefing Notes. Invasive Pl. Climate Change. http://www.weedscrc.org.au/documents. (Accessed on May 20, 2014).
  16. Darwin, R. and Kennedy, D. 2000. Economic effects of $CO_2$ fertilization of crops: transforming changes in yield into changes in supply. Environ. Model Assess. 5(3):157-168. https://doi.org/10.1023/A:1019013712133
  17. Fuhrer, J. 2003. Agroecosystem responses to combinations of elevated $CO_2$, ozone, and global climate change. Agr. Ecosyst. Environ. 97(1):1-20. https://doi.org/10.1016/S0167-8809(03)00125-7
  18. Giannini, A., Biasutti, M., Held, I.M. and Sobel, A.H. 2008. A global perspective on African climate. Climatic Change 90(4):359-383. https://doi.org/10.1007/s10584-008-9396-y
  19. Haden, V.R., Duxbury, J.M., DiTommaso, A. and Losey, J.E. 2007. Weed community dynamics in the system of rice intensification (SRI) and the efficacy of mechanical cultivation and competitive rice cultivars for weed control in Indonesia. J. Sustain. Agr. 30(4):5-26.
  20. Ingram, J.S.I., Gregory, P.J. and Izac, A.M. 2008. The role of agronomic research in climate change and food security policy. Agr. Ecosyst. Environ. 126(1-2):4-12. https://doi.org/10.1016/j.agee.2008.01.009
  21. IPCC, 1996. Climate Change 1995: The Science of Climate Change. (Eds.) J. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg and K. Maskell, Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K.
  22. IPCC, 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, (Eds.) J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, C. A. Johnson, Cambridge University Press, Cambridge, UK. p. 881.
  23. Kanampiu, F.K., Kabambe, V., Massawe, C., Jasi, L., Friesen, D., et al. 2003. Multi-site, multiseason field tests demonstrate that herbicide seed-coating herbicide-resistance maize controls Striga spp. and increases yields in several African countries. Crop Prot. 22(5):697-706. https://doi.org/10.1016/S0261-2194(03)00007-3
  24. Kriticos, D.J., Alexander, N.S. and Kolomeitz, S.M. 2006. Predicting the potential geographic distribution of weeds in 2080. In: Proc. 15th Aust. Weeds Conf. Weed Management Society of South Australia, Adelaide. pp. 27-34.
  25. Kriticos, D.J, Sutherst, R.W., Brown, J.R., Adkins, S.W. and Maywald, G.F. 2003a. Climate change and biotic invasions: A case history of a tropical woody vine. Biol. Invasions. 5(3):147- 65. https://doi.org/10.1023/A:1026193424587
  26. Kriticos, D.J., Sutherst, R.W., Brown, J.R., Adkins, S.W. and aywald, G.F. 2003b. Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. Indica in Australia. J. Appl. Ecol. 40(1):111-24. https://doi.org/10.1046/j.1365-2664.2003.00777.x
  27. Krupnik, T.J., Rodenburg, J., Shennan, C., Mbaye, D. and Haden, V.R. 2011. Trade-offs between rice yield, weed competition, and water productivity in the Senegal River valley. pp. 231-239. In: Innovation and Partnerships to Realize Africa's Rice Potential. Proceedings of the Second Africa Rice Congress, Bamako, 22-26 March 2011. Africa Rice Center, Cotonou, LB.
  28. Latif, M.A., Islam, M.R., Ali, M.Y. and Saeque, M.A. 2005. Validation of the system of rice intensification (SRI) in Bangladesh. Field Crop Res. 93(2):281-292. https://doi.org/10.1016/j.fcr.2004.10.005
  29. Mohamed, K.I., Bolin, J.F., Musselman, L.J. and Townsend, P.A. 2007. Genetic diversity of Striga and implications for control and modelling future distributions. pp. 71-84. In: Ejeta G. and Gressel J. eds. Integrating New Technologies for Striga Control - Towards ending the witch-hunt. World Scientific, Singapore.
  30. Mohamed, K.I., Papes, M., Williams, R., Benz, B.W. and Peterson, T.A. 2006. Global invasive potential of 10 parasitic witchweeds and related Orobanchaceae. Ambio. 35(6):281-288. https://doi.org/10.1579/05-R-051R.1
  31. Naylor, R.E.L. and Lutman, P.J. 2002. What is a Weed? In: Robert E. L. Naylor (Ed.), Weed Management Handbook 9ed Edition, British Crop Protection Council. pp. 1-15. Blackwell Science, Oxford, UK.
  32. Oechel, W.C. and Strain, B.R. 1985. Native species responses to increased atmospheric carbon dioxide concentration. In: Strain BR and Cure JD eds. Direct Effects of Increasing Carbon Dioxide on Vegetation. University Press of the Pacific, Honolulu, HI.
  33. Olesen, J.E. and Bindi, M. 2002. Consequences of climate change for European agricultural productivity, land use, and policy. Eur. J. Agron. 16:239-262. https://doi.org/10.1016/S1161-0301(02)00004-7
  34. Parmesan, C. 1996. Climate and species' range. Nature. 382:765-766. https://doi.org/10.1038/382765a0
  35. Parry, M.L. 1990. Climate Change and World Agriculture. Earthscan, London.
  36. Parry, M.L. 1998. The impact of climate change on European agriculture. In: T. Lewis (Ed.), The Bawden Memorial Lectures 1973-1998, Silver Jubilee Edition, pp. 325-38, British Crop Protection Council, Surrey, UK.
  37. Parry, M.L., Rosenzweig, C., Iglesias, A., Livermore, M. and Fischer, G. 2004. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environ. Chang 14(1):53-67. https://doi.org/10.1016/j.gloenvcha.2003.10.008
  38. Patterson, D.T., Musser, R.L., Flint, E.P. and Eplee, R.E. 1982. Temperature responses and potential for spread of witchweed (Striga lutea) in the United States. Weed Sci. 30(1):87-93.
  39. Patterson, D.T., Westbrook, J.K., Joyce, R.J.V., Lingren, P.D. and Rogasik, J. 1999. Weeds, insects, and diseases. Climatic Change 43(4):711-727. https://doi.org/10.1023/A:1005549400875
  40. Patterson, D.T. 1985. Comparative eco-physiology of weeds and crops. In: S. O. Duke (Ed.), Weed Physiology. pp. 101-29. CRC Press, Boca Raton, Florida. USA.
  41. Patterson, D.T. 1995. Weeds in a changing climate. Weed Sci. 43(1):685-701.
  42. Phoenix, G.K. and Press, M.C. 2005. Effects of climate change on parasitic plants: The root hemiparasitic Orobanchaceae. Folia Geobot. 40(2):205-216. https://doi.org/10.1007/BF02803235
  43. Reilly, J. and Schimmelpfennig, D. 1999. Agricultural impact assessment, vulnerability, and the scope for adaptation. Climatic Change 43(4):745-788. https://doi.org/10.1023/A:1005553518621
  44. Rosenzweig, C.R. and Hillel, D. 1998. Climate Change and Global Harvest. Oxford University Press, Oxford.
  45. Stern, N. 2006. Stern Review: The Economics of Climate Change. London: Treasury Office of the Government of the United Kingdom and Northern Ireland, UK.
  46. Seckler, D., Barker, R. and Amarasinghe, U. 1999. Water scarcity in the twenty-first century. Water Resour. Dev. 15(1):29-42. https://doi.org/10.1080/07900629948916
  47. Wand, S.J.E., Midgley, G.F., Jones, M.H. and Curtis, P.S. 1999. Responses of wild $C_4$ and $C_3$ grass (Poaceae) species to elevated atmospheric $CO_2$ concentration: A meta-analytic test of current theories and perceptions. Global Change Biol. 5(6):723-741. https://doi.org/10.1046/j.1365-2486.1999.00265.x
  48. Watling, J.R. and Press, M.C. 2000. Infection with the parasitic angiosperm Striga hermonthica influences the response of the $C_3$ cereal Oryza sativa to elevated $CO_2$. Global Change Biol. 6(8):919-930. https://doi.org/10.1046/j.1365-2486.2000.00366.x
  49. Ziska, L.H., Teasdale, J.R. and Bunce, J.A. 1999. Future atmospheric carbon dioxide may increase tolerance to glyphosate. Weed Sci. 47(5):608-615.
  50. Ziska, L.H. 2003. Evaluation of the growth response of six invasive species to past, present and future carbon dioxide concentrations. J. Exp. Bot. 54(381):395-404. https://doi.org/10.1093/jxb/erg027
  51. Ziska, L.H. 2008. Rising atmospheric carbon dioxide and plant biology: The overlooked paradigm. DNA. Cell Biol. 27(4):165-172. https://doi.org/10.1089/dna.2007.0726
  52. Ziska, L.H. 2000. The impact of elevated $CO_2$ on yield loss from a $C_3$ and $C_4$ weed in fieldgrown soybean. Global Change Biol. 6(8):899-905. https://doi.org/10.1046/j.1365-2486.2000.00364.x
  53. Ziska, L.H. and Bunce, J.A. 1997. Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected $C_4$ crops and weeds. Photosynth. Res. 54(3):199-208. https://doi.org/10.1023/A:1005947802161