DOI QR코드

DOI QR Code

산림경영형 산림탄소상쇄 사업설계를 위한 주요 수종별 베이스라인 흡수량 산정

A Study on the Baseline Carbon Stock for Major Species in Korea for Conducting Carbon Offset Projects based on Forest Management

  • 김영환 (국립산림과학원 기후변화연구센터) ;
  • 전어진 (국립산림과학원 기후변화연구센터) ;
  • 신만용 (국민대학교 산림환경시스템학과) ;
  • 정일빈 (국민대학교 산림환경시스템학과) ;
  • 이상태 (국립산림과학원 산림생산기술연구소) ;
  • 서경원 (국립산림과학원 산림생산기술연구소) ;
  • 표정기 (국립산림과학원 산림생산기술연구소)
  • Kim, Young-Hwan (Forest and Climate Change Center, Korea Forest Research Institute) ;
  • Jeon, Eo-Jin (Forest and Climate Change Center, Korea Forest Research Institute) ;
  • Shin, Man-Yong (Department of Forest Environmental System, Kookmin University) ;
  • Chung, Il-Bin (Department of Forest Environmental System, Kookmin University) ;
  • Lee, Sang-Tae (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Seo, Kyung-Won (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Pho, Jung-Kee (Forest Practice Research Center, Korea Forest Research Institute)
  • 투고 : 2014.03.07
  • 심사 : 2014.07.22
  • 발행 : 2014.09.30

초록

본 연구에서는 산림경영형 산림탄소상쇄 사업을 설계하는데 필요한 베이스라인 흡수량의 산정을 위해 제5차 국가산림자원조사 자료를 토대로 개발된 동적 임분생장모델을 적용하였다. 모델의 정확성 검증을 위해 홍천, 횡성, 양양 대치리 및 정자리에 위치한 4개 시험지 14개 간벌 처리구에서 조사된 실측자료와 비교한 결과 모델 예측치와 실측치의 편차가 5% 미만의 낮은 오차율을 보였다. 개발된 동적 임분생장모델을 이용하여 수종별 베이스라인 시나리오에 따른 임분 생장량 및 탄소저장량의 변화를 예측하고, 베이스라인 흡수량을 산정한 결과, 상수리나무의 베이스라인 흡수량이 83.01tC/ha로 가장 높은 반면, 리기다소나무(32.17tC/ha)와 중부지방소나무(39.09tC/ha)는 흡수량이 낮았다. 따라서 수종갱신을 통한 산림경영형 산림탄소상쇄사업을 추진하는 경우 리기다소나무와 중부지방소나무 임분을 대상지로 하는 것이 유리한 것으로 나타났다. 본 연구에서 제시된 수종별 베이스라인 흡수량과 동적 임분생장모델은 산림경영형 산림탄소상쇄 사업을 설계하는데 활용할 수 있을 것으로 기대된다.

In this study, we developed a dynamic stand yield model to estimate the baseline carbon stock, which is essentially required for a forest carbon offset project based on forest management. For developing the yield model, the data was acquired from the databases of the $5^{th}$ National Forest Inventory. The model was validated by comparing its estimations with field measurements that were conducted from 4 study sites (14 plots with thinning treatments) located in Hong-chun, Hoeng-sung, Yang-yang Daechi and Yang-yang Jungja. The difference between the estimations and the field measurements was less than 5%. Using the dynamic stand yield model, we estimated the changes in stand yield volume and carbon stocks for each species according to the baseline scenarios. As the results, we found that baseline carbon stock was the highest at Quercus acutissima stand (83.01tC/ha), while the lowest at Pinus rigida stand (32.17tC/ha) and Pinus densiflora stand of central region (39.09tC/ha). Hence, a project provider could get more carbon emission credits from an improved forest management project when considering the project with Pinus rigida stand or Pinus densiflora stand (central region). The baseline carbon stock and the dynamic stand yield model developed from this study would be useful for designing carbon offset projects based on improved forest management.

키워드

참고문헌

  1. Bae, J.S., Kim, Y.H., and Han, K.J. 2013. Trend of International Carbon Trading Markets and Implication for Forestry. In: Agricultural Prospect 2013, Korea Rural Economic Institute, Chapter14, pp. 523-557.
  2. Bennett, F.A. 1970. Yield and stand structural patterns for old-field plantation of slash pine. USDA Forest Service Research Paper SE-60.
  3. Ito, A., Muraoka, H., Koizumi, H., Saigusa, N., Murayama, S., and Yamamoto, S. 2006. Seasonal variation in leaf properties and ecosystem carbon budget in a cool-temperate deciduous broad-leaved forest: simulation analysis at Takayama site, Japan. Ecological Research 21(1): 137-149. https://doi.org/10.1007/s11284-005-0100-7
  4. Jang, K., Won, H.K., Kim, Y.H., Tak, K.I., Shin, M.Y., and Lee, K. 2011. Application of CBM-CFS3 model to assess carbon stock and age class changes over long term forest planning in Korea's national forest. Journal of Korean Forest Society 100(4): 591-597.
  5. Kim, Y.H., Kim, K.N., Jeon, O.J., and Lee, K.H. 2013. Development of a Carbon Standard for Forest Carbon Offset Program in Korea. Korea Forest Research Institute, Forest Policy Issues-2. pp. 19.
  6. Kim, Y.H., Kim, T.W., Won, H.K., Lee, K.H., and Shin, M.Y. 2012a. Estimation of Timber Production Under Thinning Scenarios Using a Forest Stand Yield Model. Journal of Korean Forest Society 101(1): 592-598.
  7. Kim, Y.H., Son, Y.M., Chun, H.S., Bae, J.S., Kim, R.H., Lee, K.H., Jeon, O.J., and Kim, K.N. 2012b. Standard for Forest Carbon Offset Program in Foreign Countries. Korea Forest Research Institute, Research Report-471. pp. 147.
  8. Kindermann, G.E., Obersteiner, M., Rametsteiner, E., and McCallum, I. 2006. Predicting the deforestation-trend under different carbon-prices. Carbon Balance and Management 1(15).
  9. Korea Forest Research Institute. 2005. Standards for Sustainable Forest Resource Management. Korea Forest Research Institute, Research Report-5. pp. 289.
  10. Korea Forest Research Institute. 2012. Volume, Biomass and Stand Yield Table for Korea Major Species. pp. 261.
  11. Korea Forest Service. 2013a. Standard for Korean Forest Carbon Offset Program. Korea Forest Service, Official Notice, No. 2013-37.
  12. Korea Forest Service. 2013b. Enforcement Rule of Creation and Management of Forest Resources Act. No. 66.
  13. Kurz, W.A., Dymond, C.C., White, T.M., Stinson, G., Shaw, C.H., Rampley, G.J., Smyth, C., Simpson, B.N., Neilson, E.T., Trofymow, J.A., Metsaranta, J., and Apps, M.J. 2009. CBM-CFS3 : A model of carbon-dynamics in forestry and land-use change implementing IPCC standards, Ecological Modelling 220(4): 480-504. https://doi.org/10.1016/j.ecolmodel.2008.10.018
  14. Masera, O.R., Carza-Caligaris, J.F., Kanninen, M., Karjalainen, T., Liski, J., Nabuurs, G.J., Pussinen, A., de Jong, B.H.J., and Mohren, G.M.J. 2003. Modeling carbon sequestration in afforestation, agroforestry and forest management projects : the CO2FIX V.2 approach. Ecological Modelling 164(2003): 177-199. https://doi.org/10.1016/S0304-3800(02)00419-2
  15. Seo, J.H., Son, Y.M., Lee, K.H., Lee, W.K., and Son, Y.H. 2005. The Estimation of Stand Biomass and Net Carbon Removals using Dynamic Stand Growth Model. Journal of Korean Forest Society 24(2): 37-45.
  16. Yoo, S., Lee, W.K., Son, Y., and Ito, A. 2012. Estimation of Vegetation Carbon Budget in South Korea using Ecosystem Model and Spatio-temporal Environmental Information. Korean Journal of Remote Sensing 28(1): 145-159. https://doi.org/10.7780/kjrs.2012.28.1.145

피인용 문헌

  1. Selection of Poplar Clones for Short Rotation Coppice in a Riparian Area vol.105, pp.1, 2016, https://doi.org/10.14578/jkfs.2016.105.1.103
  2. Determination of Priorities in the Forest Carbon Sink Enhancement Policies in the Republic of Korea vol.49, pp.4, 2015, https://doi.org/10.14397/jals.2015.49.4.95
  3. An Optimal Management Strategy of Carbon Forestry with a Stochastic Price vol.10, pp.9, 2018, https://doi.org/10.3390/su10093290
  4. 탄소 저장량을 이용한 국내 주요 생태계 기후 조절 서비스 지표 산정 vol.34, pp.1, 2014, https://doi.org/10.11626/kjeb.2016.34.1.008
  5. Perspectives of Private Forest Owners toward Investment in Forest Carbon Offset Projects: A Case of Geumsan-Gun, South Korea vol.10, pp.1, 2019, https://doi.org/10.3390/f10010021
  6. Investigating the Optimal Location of Potential Forest Industry Clusters to Enhance Domestic Timber Utilization in South Korea vol.11, pp.9, 2020, https://doi.org/10.3390/f11090936
  7. 국내 일본잎갈나무림의 자원량 및 목재생산 잠재량 분석 vol.109, pp.4, 2020, https://doi.org/10.14578/jkfs.2020.109.4.454
  8. Net Revenue of Forest Carbon Offset Projects: Application of the Korean Emission Trading System in the Forestry Sector vol.12, pp.6, 2014, https://doi.org/10.3390/f12060742