DOI QR코드

DOI QR Code

Simultaneous and Systemic Knock-down of Big Defensin 1 and 2 gene Expression in the Pacific Oyster Crassostrea gigas using Long Double-stranded RNA-mediated RNA Interference

  • Jee, Bo Young (Aquatic Life Disease Control Division, National Fisheries Research and Development Institute) ;
  • Kim, Min Sun (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Cho, Mi Young (Aquatic Life Disease Control Division, National Fisheries Research and Development Institute) ;
  • Lee, Soon Jeong (Aquatic Life Disease Control Division, National Fisheries Research and Development Institute) ;
  • Park, Myung Ae (Aquatic Life Disease Control Division, National Fisheries Research and Development Institute) ;
  • Kim, Jin Woo (Pathology division, National Fisheries Research and Development Institute) ;
  • Choi, Seung Hyuk (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Jeong, Hyun Do (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kim, Ki Hong (Department of Aquatic Life Medicine, Pukyong National University)
  • Received : 2013.06.28
  • Accepted : 2014.04.16
  • Published : 2014.09.30

Abstract

RNA interference (RNAi)-mediated transcriptional knock-down of Crassostrea gigas big defensin 1 and 2 genes (Cg-BigDef1 and Cg-BigDef2) was investigated. The cDNA sequences of Cg-BigDef1 and Cg-BigDef2 were identical, excluding an additional fragment of 20 nucleotides in Cg-BigDef1; thus, a long double-stranded RNA (dsRNA) targeting the mRNA of Cg-BigDef2 effectively downregulated both Cg-BigDef2 and Cg-BigDef1. In addition, long dsRNA targeting green fluorescent protein (GFP) did not affect transcription of the two big defensin genes. These results suggest that the transcriptional downregulation of Cg-BigDef1 and Cg-BigDef2 was mediated by sequence-specific RNA interference (RNAi). Despite injection of long dsRNA targeting Cg-BigDef2 into only the adductor muscle, knock-down of Cg-BigDef1 and Cg-BigDef2 was observed in the adductor muscle, hemocytes, mantle, and gills, suggestive of systemic spread of RNAi in C. gigas. Furthermore, the inhibitory effect of dsRNA persisted until 72 h post-injection, indicative of a long-lasting RNAi-mediated knock-down of target genes.

Keywords

References

  1. Bernstein E, Denli AM and Hannon GJ. 2001. The rest is silence. RNA 7, 1509-1521.
  2. Bitko V, Musiyenko A, Shulyayeva O and Barik S. 2005. Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 11, 50-55. https://doi.org/10.1038/nm1164
  3. Bulet P, Stocklin R and Menin L. 2004. Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198, 169-184. https://doi.org/10.1111/j.0105-2896.2004.0124.x
  4. Dong Y and Friedrich M. 2005. Nymphal RNAi: systemic RNAi mediated gene knockdown in juvenile grasshopper. BMC Biotechnol 5, 25. https://doi.org/10.1186/1472-6750-5-25
  5. Fabioux C, Corporeau C, Quillien V, Favrel P and Huvet A. 2009. In vivo RNA interference in oyster - vasa silencing inhibits germ cell development. FEBS J 276, 2566-2573. https://doi.org/10.1111/j.1742-4658.2009.06982.x
  6. Fire A. 1999. RNA-triggered gene silencing. Trends Genet 15, 358-363. https://doi.org/10.1016/S0168-9525(99)01818-1
  7. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE and Mello CC. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811. https://doi.org/10.1038/35888
  8. Gerdol M, De Moro G, Manfrin C, Venier P and Pallavicini A. 2012. Big defensins and mytimacins, new AMP families of the Mediterranean mussel Mytilus galloprovincialis. Dev Comp Immunol 36, 390-399. https://doi.org/10.1016/j.dci.2011.08.003
  9. Gonzalez M, Gueguen Y, Desserre G, de Lorgeril J, Romestand B and Bachere E. 2007. Molecular characterization of two isoforms of defensin from hemocytes of the oyster Crassostrea gigas. Dev Comp Immunol 31, 332-339. https://doi.org/10.1016/j.dci.2006.07.006
  10. Gueguen Y, Herpin A, Aumelas A, Garnier J, Fievet J, Escoubas JM, Bulet P, Gonzalez M, Lelong C, Favrel P. and Bachere E. 2006. Characterization of a defensin from the oyster Crassostrea gigas. Recombinant production, folding, solution structure, antimicrobial activities, and gene expression. J Biol Chem 281, 313-323. https://doi.org/10.1074/jbc.M510850200
  11. Hancock REW and Scott MG. 2000. The role of antimicrobial peptides in animal defenses. Proc Nat'l Acad Sci USA 97, 8856-8861. https://doi.org/10.1073/pnas.97.16.8856
  12. Hannon GJ. 2002. RNA interference. Nature 418, 244-251. https://doi.org/10.1038/418244a
  13. Huvet A, Fleury E, Corporeau C, Quillien V, Daniel JY, Riviere G, Boudry P and Fabioux C. 2012. In vivo RNA interference of a gonad-specific transforming growth factor-$\beta$ in the Pacific oyster Crassostrea gigas. Mar Biotechnol 14, 402-410. https://doi.org/10.1007/s10126-011-9421-4
  14. Jiang Y, Loker ES and Zhang SM. 2006. In vivo and in vitro knockdown of FREP2 gene expression in the snail Biomphalaria glabrata using RNA interference. Dev Comp Immunol 30, 855-866. https://doi.org/10.1016/j.dci.2005.12.004
  15. Korneev SA, Kemenes I, Straub V, Staras K, Korneeva EI, Kemenes G, Benjamin PR and O'Shea M. 2002. Suppression of nitric oxide (NO)-dependent behavior by double-stranded RNA mediated silencing of a neuronal NO synthase gene. J Neurosci 22, RC227, 1-5.
  16. Lee JA, Kim HK, Kim KH, Han JH, Lee YS, Lim CS, Chang DJ, Kubo T and Kaang BK. 2001. Overexpression of and RNA interference with the CCAAT enhancer-binding protein on long-term facilitation of Aplysia sensory to motor synapses. Learn Mem 8, 220-226. https://doi.org/10.1101/lm.40201
  17. Otero-Gonzalez AJ, Magalhaes BS, Garcia-Villarino M, Lopez-Abarrategui C, Sousa DA, Dias SC and Franco OL. 2010. Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. FASEB J 24, 1320-1334. https://doi.org/10.1096/fj.09-143388
  18. Perrigault M, Tanguy A and Allam B. 2009. Identification and expression of differentially expressed genes in the hard clam, Mercenaria mercenaria, in response to quahog parasite unknown (QPX). BMC Genomics 10, 377-394. https://doi.org/10.1186/1471-2164-10-377
  19. Roignant JY, Carre C, Mugat B, Szymczak D, Lepesant JA and Antoniewski C. 2003. Absence of transitive and systemic pathways allows cell-specific and isoform specific RNAi in Drosophila. RNA 9, 299-308. https://doi.org/10.1261/rna.2154103
  20. Rosa RD, Santini A, Fievet J, Bulet P, Destoumieux-Garzon D and Bachere E. 2011. Big defensins, a diverse family of antimicrobial peptides that follows different patterns of expression in hemocytes of the oyster Crassostrea gigas. PLoS ONE 6, e25594. https://doi.org/10.1371/journal.pone.0025594
  21. Saito T, Kawabata S, Shigenaga T, Takayenoki Y, Cho J, Nakajima H, Hirata M and Iwanaga S. 1995. A novel big defensin identified in horseshoe crab hemocytes: Isolation, amino acid sequence, and antibacterial activity. J Biochem 117, 1131-1137. https://doi.org/10.1093/oxfordjournals.jbchem.a124818
  22. Sharp PA. 2001. RNA interference-2001. Genes Develop 15, 485-490. https://doi.org/10.1101/gad.880001
  23. Wang M, Yang J, Zhou Z, Qiu L, Wang L, Zhang H, Gao Y, Wang X, Zhang L, Zhao J and Song L. 2011. A primitive Toll-like receptor signaling pathway in mollusk Zhikong scallop Chlamys farreri. Dev Comp Immunol 35, 511-520. https://doi.org/10.1016/j.dci.2010.12.005
  24. Winston WM, Molodowitch C and Hunter CP. 2002. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295, 2456-2459. https://doi.org/10.1126/science.1068836
  25. Zamore PD. 2001. RNA interference: listening to the sound of silence. Nat Struct Biol 8, 746-750. https://doi.org/10.1038/nsb0901-746
  26. Zhao J, Song L, Li C, Ni D, Wu L, Zhu L, Wang H and Xu W. 2007. Molecular cloning, expression of a big defensin gene from bay scallop Argopecten irradians and the antimicrobial activity of its recombinant protein. Mol Immunol 44, 360-368. https://doi.org/10.1016/j.molimm.2006.02.025
  27. Zhao J, Li C, Chen A, Li L, Su X and Li T. 2010. Molecular characterization of a novel big defensin from clam Venerupis philippinarum. PLoS ONE 5, e13480. https://doi.org/10.1371/journal.pone.0013480

Cited by

  1. A Rhodopsin-Like Gene May Be Associated With the Light-Sensitivity of Adult Pacific Oyster Crassostrea gigas vol.9, pp.1664-042X, 2018, https://doi.org/10.3389/fphys.2018.00221