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The single-period production inventory control problem under random yield is considered to analyze the impact 
of the yield characteristics on the firm’s profit. We use the stochastic comparison as a main vehicle to compare 
the profits resulted under different random yields. Commonly used stochastic orderings are addressed with an 
analysis of their implications on the firm’s profit. Moreover, a distribution-free bound on the profit is derived.

Keywords: Random Yield, Newsvendor Problem, Stochastic Orders

1. Introduction

Random yields are so pervasive in many production environ-
ments. Production firms make their effort to improve the yield 
quality with the goal of achieving more profit. In many cases, 
the yield quality improvement aims at reducing the varia-
bility of the final yield. Moreover, making random yield sto-
chastically larger (hence increasing the possibility of obtain-
ing good units) has been advocated as an effective way to 
improve the firm’s profitability.

However, there are circumstances that stochastically large 
random yields may harm the long-term profit of the producers. 
Gupta and Cooper (2005) gave an example of such counter-
intuitive phenomena. They also studied various cases where 
the increase in variance of the yield will be desirable. This 
note extends their results in different perspectives. Specifically, 
we focus on the various stochastic orderings and their im-
plications on the firm’s profit. To this end, we will consider 
the single-period problem (newsvendor problem) with ran-

dom yield but with certain demand. In many industries, the 
assumption of certain demand is not so unrealistic, as pointed 
out by Keren (2009). Moreover, focusing solely on the ran-
dom yield can make it easier to illuminate the important is-
sues related to yield quality management.

After presenting some preliminary results, we will consid-
er various stochastic orders including the usual stochastic or-
der and the convex order. Assuming two random yields sat-
isfy the specified stochastic order relation, the corresponding 
profits will be compared. Moreover, we will present a dis-
tribution-free bound on the profit. The results can be used to 
give an insight into the real benefits of the firm’s product/pro-
cess quality improvement initiatives.

Previous researches on the random yield include Gerchak 
et al. (1986), Gerchak and Parlar (1990), Henig and Gerchak 
(1990), Anupindi and Akella (1993), to name a few. Yano 
and Lee (1995) gave a comprehensive review on the random 
yields under the lot sizing contexts. Khouja (1999) serves as 
a good reference on the newsvendor problem.

This work was supported by 2008 Research Fund of Myongji University.
†Corresponding author : Professor Kyungchul Park, School of Business, Myongji University, 50-3 Namgajwa-dong, Seodaemun-gu, Seoul, 

120-728 Korea, Tel : +82-2-300-7181, Fax : +82-2-300-0734, E-mail : daneel@mju.ac.kr
  Received June 3, 2014; Accepted June 11, 2014.



478 Kyungchul Park

2. Model Description and Preliminary 
Results

2.1 Inventory Control Problem under Random 
Yield

Let r, c, h, and p denote the retail price, the unit production 
cost, the unit holding (or disposal) cost, and the unit penalty 
cost, respectively. The values of r, c, and p are assumed to be 
nonnegative. However, h can take the negative value repre-
senting the salvage value. The number of good units obtained 
from the production is a random variable and is denoted as 
 , where x is a production lot size and U is a nonnegative 
random variable (yield). Let  be its distribution function. 
We assume that    for the production to be 
beneficial. In addition, to prevent stocking infinite inventory, 
it is assumed   . Let  be a known demand. We 
write   for two random variables U and V if they have 
the same distribution functions.

Suppose the realized yield is , then the profit is written as 
follows:

                                   (1)
  .

 
where     for all real numbers a.

The expected profit to be maximized is

∏            (2)
            .

Dividing (2) by  results in

∏       (3)
                .

Thus we have ∏   ∏  , and so without loss 
of generality, we can assume the demand equals 1, which is 
assumed from now.

The expected profit can be rewritten as follows :

∏     (4)
            

The optimal lot size and the maximum expected profit are 
given in the following Theorem 1 (for details, see Park and 
Lee, 2014).

Theorem 1 : Let U be a continuous nonnegative random vari-
able.
1. The optimal lot size is      where   is given by






   . (5)

2. The maximum expected profit is

∏
 ∏

 ∏   .(6)

Note that the optimality condition (5) is well-defined since 
  . 

2.2 Stochastic Ordering
A stochastic order is used to define a partial order among 

the random variables. Shaked and Shanthikumar (1994) and 
Muller and Stoyan (2002) present comprehensive background. 
In this note, we consider the integral stochastic orders de-
fined as follows.

Definition 1 : Let   be a nonempty class of functions. For 
two random variables X and Y, ≤  holds if and only if 
 ≤  for all ∈ .
1. If   is the class of increasing functions, then the order is 

called a usual stochastic order and is denoted as ≤ .
2. If   is the class of convex functions, then the order is 

called a convex order and is denoted as ≤  .
3. If   is the class of increasing concave functions, then the 

order is called an increasing concave order and is denoted 
as ≤ .

It is well-known that given two random variables X and Y, 
Y is stochastically larger than X (that is, ≤ ) if and only 
if

 ≥   for all real numbers t. (7)

Briefly, ≤  implies that it is more likely that the ran-
dom variable Y takes larger values than X. Hence it may 
seem to be intuitively clear that a stochastically larger yield 
results in more profit. However, as Gupta and Cooper (2005) 
have shown, it is possible that a stochastically larger yield 
can result in less profit.

For two nonnegative random variables X and Y, ≤  
implies ≤. If ≤  and ≤, then    
(Muller and Stoyan 2002). Hence the usual stochastic order is 
not helpful when investigating the effect of variance reduction 
in the random yield. The convex order is in order in this case, 
since  ≤  implies  and  ≤ . 

3. Main Results

This section explores the implications of the various stochas-
tic orders on the firm’s profit. We will consider the usual sto-
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chastic order, the convex order, and the increasing concave 
order. Based on the results, the mean-preserving transform 
will be analyzed and a distribution-free bound on the profit 
will also be derived.

3.1 Usual Stochastic Order and Increasing 
Concave Order

Let two nonnegative random yields U and V be given and 
they satisfy ≤ . As mentioned in the previous section, 
it does not imply in general ∏ ≤∏ . However, a suffi-
cient condition for the relation to hold can be found by inves-
tigating the Theorem 1. 

Proposition 1 : If ≤  and  ≤  (the corresponding 
optimal lot sizes), then ∏ ≤∏ .

Proof : Note that  ≤  ≤  . So by 
Theorem 1, the result follows. 󰋪

Though in general, ≤  does not imply ∏ ≤∏ , it 
is true when ≤ . In this case, the profit function (1) is in-
creasing in . Hence we get the following result.

Proposition 2 : Let ≤ . Then ≤  imply ∏ ≥∏ 
for all ≥ , hence ∏ ≤∏ .

The above proposition tells that if a leftover unit has a non-
negative salvage value, then the stochastically larger yield al-
ways gives more profit. Hence the previously mentioned 
counter-intuitive case occurs only when positive holding costs 
arise. 

Note that the Proposition 2 also holds when ≤  since 
the profit function is an increasing concave function in . 
Since ≤  implies ≤ , the proposition with the in-
creased concave order is more general.

3.2 Convex Order
Let two nonnegative random yields U and V be given with 
≤ . Let us define

    

       (8)

Also let   . It is clear that ∏ ≥∏  if 
and only if  ≤ .

Note that for each nonnegative number x, the function  
is a convex function in . Hence ≤  implies ∏ ≥
∏  for all nonnegative numbers x (which further implies 
that ∏ ≥∏ ). The following proposition states that the 
converse also holds. 

Proposition 3 : Let . Then ∏ ≥∏  holds 
for all ≥  if and only if ≤ .

Proof : We only need to prove the “only if” part. ∏ ≥
∏  is equivalent to  ≤ , which further is 
equivalent to  ≤ for all ≥ . The 
relation can be restated as  ≤ for all t by 
noting that U and V are nonnegative random variables. Since 
 , the relation implies 
 ≤ for all t, which means that ≤ . 󰋪

The above proposition says that if ≤ , then for any 
production lot size, the profit under the random yield U is not 
smaller than that under V. In Muller and Stoyan (2002), the 
comparison criteria for commonly used parametric distributions 
can be found. For many kinds of distributions used to model 
the random yield such as the (truncated) normal distribution 
and the lognormal distribution, the condition ≤  is equi-
valent to  ≤ . Thus if the random yield can 
be shown to follow such a distribution, the variance reduc-
tion (while preserving the mean) always results in improved 
profit. Moreover, even if the same lot size is used (for in-
stance, due to some technical reasons), the profit should be 
improved. Hence in many cases, the process quality improve-
ment resulting in smaller variance leads to more profit.

3.3 Mean-Preserving Transform
As an application of the Proposition 3, let us consider the 

case of mean-preserving transform (Gerchak and Mossman 
1992). Specifically, let us consider the family of random 
yields  defined as   , where U is 
a nonnegative random variable,  and ≤ ≤ . Since 
   and    , the mean is 
fixed but the variance is decreasing in a (so the name mean- 
preserving transform is used). By noting that  ≤   
≤ , we have   
 . In the following, we will show that if     , 
then  ≤  , which implies the variance-reduction 
results in the increased profit. To this end, we need the fol-
lowing lemma.

Lemma 1 : (Muller and Stoyan 2002) Let X and Y be random 
variables with the same mean. If there is some  such that 
 ≤   for all ≤  and  ≥   for all 
  , then ≤ .

The condition given in Lemma 1 is called as a cut criterion.

Proposition 4 : Let    where ≤ ≤ . 
Then ∏  is increasing in a.

Proof : Let     . Then  ≥   if and 
only if ≤ . Hence   and   satisfy the cut criterion 
and so  ≤  . Then the result follows from the Pro-
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position 3. 󰋪
3.4 Distribution-Free Bound on the Maximum 

Profit
Let us define    ≤≤  , that 

is, the set of random variables with the same mean and with 
the common support  , where ≤  . Consider the 
order ≤   defined on . Let 


  and   be the minimum 

and the maximum elements in  with respect to ≤  , 
that is, 


 ≤ ≤ 

  for all  ∈. The following 
lemma shows that such elements do exist and also character-
izes them. For a real number a, let  be the random variable 
with its whole mass at a, that is,     . 

Lemma 2 : Let 

   and  , where   

 . Then 

 ≤ ≤ 

  for all  ∈. 
Proof : Let f be a convex function. Then for any random vari-
able  ∈, 


     ≤  holds by 

Jensen’s inequality. Hence 

 ≤ . Now consider the re-

maining inequality. Note that 

    for all ∈   and 



  . If  ≥  , then  ≥   for all 
∈ . Hence the cut criterion is satisfied with    and 
so ≤ 

 . Now if    , then since   , 
there exists ∈  which satisfies the cut criterion, which 
completes the proof. 󰋪

By using the above lemma, we have the following :

       ∏ ≤∏ ≤∏

 ,  

for all  ≥  and  ∈,     (9)

which implies

∏
 ≤∏

 ≤∏


 , for all  ∈. (10)

It can be shown that ∏


   and ∏  ∏

∏  . Thus we get the following distribution- 
free bound on the maximum profit.

Proposition 5 : For all ∈,  ∏∏ 
∏
 ≤ .

To get more insight, let us consider the special case of 
  and   . In this case, it can be easily seen that ∏ 
∏   . Hence we get the following re-
sult.

Corollary 1 : For all ∈,  ≤∏ ≤
.

Note that in Corollary 1, both the lower and the upper 
bounds are increasing in the mean yield.

4. Concluding Remarks

This note explores the stochastic ordering among the random 
yields and its implications on the maximum profit. The con-
vex order plays an important role in comparing the maximum 
profit, especially with respect to the variance of the yield. 
When the random yield can be modeled as a usual parametric 
distribution, the variance reduction results in more profit. Also 
the mean-preserving transform supports the result. Hence in 
many cases, we can conclude that the variance reduction can 
contribute to improve the firm’s profitability. The distribu-
tion-free bound given will be very helpful in estimating the 
profit when the random yield cannot be accurately charac-
terized. 

References

Anupindi, R. and Akella, R. (1993), Diversification under supply un-
certainty, Management Sci., 29, 944-963.

Gerchak, Y. and Mossman, D. (1992), On the effect of demand random-
ness on inventories and costs, Operations Research, 40, 804-807.

Gerchak, Y. and Parlar, M. (1990), Yield variability, cost tradeoffs and di-
versification in the EOQ model, Naval Res. Logistics, 37, 341-354.

Gerchak, Y., Parlar, M., and Vickson, R. G. (1986), A single period pro-
duction model with uncertain output and demand, Proc.25th IEEE 
Conf. on Decision and Control, Athens, Greece, 1733-1736.

Gupta, D. and Cooper, W. L. (2005), Stochastic comparisons in pro-
duction yield management, Operations Research, 53, 377-384.

Henig, M. and Gerchak, Y. (1990), The structure of period review poli-
cies in the presence of variable yield, Operations Research, 38, 634- 
643.

Keren, B. (2009), The single-period inventory problem : extension to ran-
dom yield from the perspective of the supply chain, Omega, 37, 801- 
810.

Khouja, M. (1999), The single-period newsvendor problem : literature re-
view and suggestions for further research, Omega, 27, 537-253.

Muller, A. and Stoyan, D. (2002), Comparison Methods for Stochastic 
Models and Risks, John Wiley and Sons, Chichester, UK.

Park, K. and Lee, K. (2014), A Comprehensive analysis on the single-peri-
od inventory control problem under random yield and certain demand, 
Working Paper.

Shaked, M. and Shanthikumar, J. G. (1994), Stochastic Orders and Their 
Applications, Academic Press, New York.

Shih, W. (1980), Optimal inventory policies when stockouts result from 
defective products, Internat. J . Production Res., 18, 677-685.

Yano, C. A. and Lee, H. L. (1995), Lot sizing with random yields : A re-
view, Operations Research, 43(2), 311-334.


