References
- D. Poitras and J. A. Dobrowolski, Toward perfect antireflection coatings. 2. Theory. Appl. Opt. 43, 1286-1295 (2004). https://doi.org/10.1364/AO.43.001286
- A. Deinega, I. Valuev, B. Potapkin, and Y. Lozovik, Minimizing light reflection from dielectric textured surfaces. J. Opt. Soc. Am. A 28, 770-777 (2011). https://doi.org/10.1364/JOSAA.28.000770
- R. R. Willey. Further guidance for broadband antireflection coating design. Appl. Opt. 50, C274-C278 (2011). https://doi.org/10.1364/AO.50.00C274
- P. B. Clapham and M. C. Hutley, Reduction of lens refletion by the "Moth Eye" principle. Nature 244, 281-283 (1973). https://doi.org/10.1038/244281a0
-
K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, Antireflection microstructures fabricated upon fluorine-doped
$SiO_{2}$ films. Opt. Lett. 26, 1642-1644 (2001). https://doi.org/10.1364/OL.26.001642 - Y. Kanamori, M. Ishimori and K. Hane, High efficient light-emitting diodes with antireflection subwavelength gratings. IEEE Photon Technol Lett. 14, 1064-1066 (2002). https://doi.org/10.1109/LPT.2002.1021970
- D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, Light on the moth-eye corneal nipple array of butterflies. Proc. R. Soc. B, 273, 661-667 (2006). https://doi.org/10.1098/rspb.2005.3369
- Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, Bioinspired parabola subwavelength structures for improved broadband antireflection. Small 6, 984-987 (2010). https://doi.org/10.1002/smll.201000079
- Y. M. Song, G. C. Park, S. J. Jang, J. H. Ha, J. S. Yu, and Y. T. Lee, Multifunctional light escaping architecture inspired by compound eye surface structures: From understanding to experimental demonstration. Opt Express 19, A157-A165 (2011). https://doi.org/10.1364/OE.19.00A157
- Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography. Langmuir 26, 9842-9847 (2010). https://doi.org/10.1021/la100183y
- J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 9, 279-282 (2009). https://doi.org/10.1021/nl802886y
- C. I. Yeo, J. H. Kwon, S. J. Jang, and Y. T. Lee Antireflective disordered subwavelength structure on GaAs using spin-coated Ag ink mask. Opt Express 20, 19554-19562 (2012). https://doi.org/10.1364/OE.20.019554
- Y. Lee, K. Koh, H. Na, K. Kim, J. J. Kang, and J. Kim, Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask. Nanoscale Res. Lett. 4, 364-370 (2009). https://doi.org/10.1007/s11671-009-9255-4
- W. L. Min, B. Jiang, and P. Jiang, Bioinspired self-cleaning antireflection coatings. Adv. Mater 20, 3914-2918 (2008). https://doi.org/10.1002/adma.200800791
- J. Son, L. K. Verma, A. J. Danner, C. S. Bhatia, and H. Yang, Enhancement of optical transmission with random nanohole structures. Opt. Express 19, A35-A40 (2010).
- G. M. Moharam and T. K. Gaylord, Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 71, 811-818 (1981). https://doi.org/10.1364/JOSA.71.000811
- T. Ichiki, Y. Sugiyama, T. Ujiie, and Y. Horiike, Deep dry etching of borosilicate glass using fluorine-based high-density plasmas for microelectromechanical system fabrication. J. Vac. Sci. Technol. B 21, 2188-2192 (2003). https://doi.org/10.1116/1.1612935
-
J. H. You, B. I. Lee, J. Lee, H. Kim, and S. H. Byeon, Superhydrophilic and antireflective
$La(OH)_{3}/SiO_{2}$ -nanorod/nanosphere films. J. Colloid Interface Sci. 354, 373-379 (2011). https://doi.org/10.1016/j.jcis.2010.10.009