DOI QR코드

DOI QR Code

광릉 KoFlux 관측지 계곡에서의 국지순환 수치모의

Numerical Simulation of Local Atmospheric Circulations in the Valley of Gwangneung KoFlux Sites

  • 투고 : 2014.08.28
  • 심사 : 2014.09.29
  • 발행 : 2014.09.30

초록

90m 고해상도 SRTM 지형자료를 장착한 WRF 수치모형을 이용하여 광릉 활엽수림 KoFlux 타워(GDK)와 침엽수림 KoFlux 타워(GCK)가 위치한 계곡 및 주변에서의 국지 대기순환을 식생-대기 이산화탄소 순환 및 미기상학적 관점에서 연구하였다. 지표 부근 온도와 바람에 대하여 모형과 관측 결과를 비교함으로써 모형의 전반적인 성능을 평가하였고, 연구 지역에 국지순환이 발생한 맑은 날(Case I)과 흐린 날(Case II) 사례를 선정하여 수치모의를 수행하고 그 결과를 정성적으로 분석하였다. 관측된 바람장은 GDK와 GCK 간에, 또 Case I과 Case II 간에 주간 및 야간 국지풍의 시작, 종료, 지속시간, 강도 등에 차이를 보였다. 모형의 수치모의 결과들은 광릉 KoFlux 타워 관측으로부터 그 가능성이 제기된 관측지 계곡의 배수류가 실제로 존재함을 증거하였다. 전반적으로 모형이 모의한 바람장은 아침의 배수류-사면활승풍 전이와 저녁의 사면활승풍 역전 등을 포함하여 계곡 및 주변에서 관측된 국지풍의 일변화를 현실적으로 모사하였다. 또한 국지풍 간 상호작용의 복잡성도 지시하였는데, 가령 주간에 광릉 관측지 계곡 내부의 서풍은 반드시 산풍인 것은 아니었으며, 종종 약한 종관규모 바람 또는 서쪽에서 불어온 해풍과 같은 보다 큰 규모의 중규모 바람 등 다른 풍계와 결합이 되어 있었다. 광릉 생태계의 에너지, 물질, 정보 흐름의 시공간적 변동을 입체적으로 이해하는데 있어서 이러한 고해상도 국지순환 수치모의 결과는 상당히 유용한 것으로 판단되며, 구축된 국지모의 시스템을 지속적으로 개선하는 노력이 향후 뒤따라야 할 것이다. 아울러, 다른 농림생태계 관측지도 모의 영역에 포함시켜 모형 결과의 활용도를 넓힐 필요가 있다.

A 90-m horizontal-resolution numerical model was configured to study the micrometeorological features of local winds in the valley of Gwangneung KoFlux (Korea Flux network) Sites (GDK: Gwangneung Deciduous forest site in Korea, GCK: Gwangneung Coniferous forest site in Korea) during summer days. The U. S. Geological Survey (USGS) Shuttle Radar Topography Mission (SRTM) data were employed for high-resolution model terrain height. Model performance was evaluated by comparing observed and simulated near-surface temperature and winds. Detailed qualitative analysis of the model-simulated wind field was carried out for two selected cases which are a clear day (Case I) and a cloudy day (Case II). Observed winds exhibited that GDK and GCK, as well as Case I and Case II, had differences in timing, duration and strength of daytime and nighttime wind direction and speeds. The model simulation results strongly supported the existence of the drainage flow in the valley of the KoFlux tower sites. Overall, the simulated model fields realistically presented the diurnal cycle of local winds in and around the valley, including the morning drainage-upslope transition and the evening reversal of upslope wind. Also, they indicated the complexity of local winds interactions by presenting that daytime westerly winds in the valley were not always pure mountain winds and were often coupled with larger-scale wind systems, such as synoptic-scale winds or mesoscale sea breezes blowing from the west coast of the peninsula.

키워드

참고문헌

  1. Kim, M. K., W. G. Do, and J. G. Cho, 2012: The analysis of atmospheric environment features using the urban atmospheric environment map in Busan. The Annual Report of Busan Metropolitan City Institute of Health & Environment 22, 177-200. (in Korean with English Abstract)
  2. Chen, F. and J. Dudhia, 2001: Coupling and advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system-part I: model implementation and sensitivity. Monthly Weather Review 129, 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  3. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences 46, 3077-3107. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
  4. Glickman, T. S., 2000: Glossary of Meteorology, Second Edition, Boston, Massachusetts, American Meteorological Society.
  5. Hong, S.-Y. and J.-O. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society 42, 129-151.
  6. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  7. Janji , Z. I. 2002: Nonsingular implementation of the Mellor- Yamada level 2.5 scheme in the NCEP Meso model, NCEP Office Note 437.
  8. Janji , Z. I., 1994: The step-mountain Eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review 122, 927-945. https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
  9. Janji , Z. I., 1996: The surface layer in the NCEP eta model. The 11th Conference on Numerical Weather Prediction, Norfolk, Va, USA, August 1996.
  10. Jeong, J.-H., S. K. Song, H.-W. Lee, and Y.-K. Kim, 2012: Effects of high-resolution land cover and topography on local circulations in two different regions of Korea: a numerical modeling study. Meteorol. Atmos. Phys. 118, 1-20. https://doi.org/10.1007/s00703-012-0211-y
  11. Kain, J. S. and J. Kain, 2004: The Kain-Fritsch convective parameterization: an update. Journal of Applied Meteorology 43, 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  12. Lee, H. W., D. H. Kim, S. H. Lee, M. J. Kim, S. Y. Park, and H. G. Kim, 2010: Skillful wind field simulation over complex terrain using coupling system of atmospheric prognostic and diagnostic models. Journal of the Environmental Sciences 19, 27-37. (in Korean with English Abstract) https://doi.org/10.5322/JES.2010.19.1.027
  13. Lee, S.-J., D. F. Parrish, S.-Y. Park, W.-S. Wu, S. J. Greybush, W.-J. Lee, and S. J. Lord, 2011: Effects of 2-m air temperature assimilation and a new near-surface observation operator on the NCEP Gridpoint Statistical-Interpolation System. Asia-Pacific Journal of Atmospheric Science 47, 353-376. https://doi.org/10.1007/s13143-011-0022-y
  14. Malla-Thakuri, B., M. Kang, J.-H. Chun, and J. Kim, 2014: Vertical profiles of $CO_{2}$ concentrations and storage in temperate forest in Korea. Tellus, To be submitted.
  15. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research 102, 16663-16682. https://doi.org/10.1029/97JD00237
  16. Monin, A. S. and A. M. Obukhov, 1954: Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnom sloe atmosfery. Trudy Geofizicheskogo Instituta, Akademiya Nauk SSSR 24, 163-187.
  17. Moon, S. K., S. H. Park, J. Hong, and J. Kim, 2005: Spatial characteristics of Gwangneung forest site based on high resolution satellite images and DEM. Korean Journal of Agricultural and Forest Meteorology 7, 115-123. (in Korean with English Abstract)
  18. Moore, G. E., C. Daly, M.-K. Liu, and S.-J. Huang, 1987: Modeling of mountain-valley wind fields in the southern San Joaquin valley, California. Journal of Climate and Applied Meteorology 26, 1230-1242. https://doi.org/10.1175/1520-0450(1987)026<1230:MOMVWF>2.0.CO;2
  19. Park, S. B., R. Yuan, M. Kang, J. Kim, D. H. Lee, J. Hong, and Y. J. Choi, 2007: Comparison of net ecosystem exchange of $CO_{2}$ at Gwangneung forest and Haenam farmland. Proceeding of the 2007 Spring Meeting of Korean Meteorological Society 378-379. (in Korean)
  20. Pielke, R. A., 1974: A three-dimensional numerical model of sea breezes. Monthly Weather Review 102, 115-139. https://doi.org/10.1175/1520-0493(1974)102<0115:ATDNMO>2.0.CO;2
  21. Seong, J. H., S. O. Han, J. H. Jeong, and K. H. Kim, 2013: Study on sensitivities and fire area errors in WRF-Fire simulation to different resolution data set of fuel and terrain, and surface wind. Atmosphere 23, 485-500. (in Korean with English Abstract) https://doi.org/10.14191/Atmos.2013.23.4.485
  22. Yocke, M. A., M. K. Liu, and J. L. McElroy, 1977: The development of a three-dimensional wind model for complex terrain. Joint Conference on Application on Air Pollution Meteorology. American Meteorological Society and Air Pollution Control Association, 209-214.

피인용 문헌

  1. Impacts of subgrid-scale orography parameterization on simulated atmospheric fields over Korea using a high-resolution atmospheric forecast model pp.1436-5065, 2019, https://doi.org/10.1007/s00703-018-0615-4