References
- Adam, N. R., Wall, G. W., Kimball, B. A., Idso, S. B. and Webber, A. N., 2004: Photosynthetic down-regulation over long-term co2 enrichment in leaves of sour orange (citrus aurantium) trees. New Phytologist 163(2), 341-347. https://doi.org/10.1111/j.1469-8137.2004.01104.x
- Adams, M., Campbell, R., Allen, H. and Davey, C., 1987: Root and foliar nutrient concentrations in loblolly pine: Effects of season, site, and fertilization. Forest Science 33(4), 984-996.
- Ainsworth, E. A., Davey, P. A., Bernacchi, C. J., Dermody, O. C., Heaton, E. A., Moore, D. J., Morgan, P. B., Naidu, S. L., Yoo Ra, H. S. and Zhu, X. G., 2002: A meta-analysis of elevated [co2] effects on soybean (glycine max) physiology, growth and yield. Global Change Biology 8(8), 695-709. https://doi.org/10.1046/j.1365-2486.2002.00498.x
- Ainsworth, E. A. and Long, S. P., 2005: What have we learned from 15 years of free-air co2 enrichment (face)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising co2. New Phytologist 165(2), 351-372.
- Ainsworth, E. A. and Rogers, A., 2007: The response of photosynthesis and stomatal conductance to rising [co2]: Mechanisms and environmental interactions. Plant, Cell & Environment 30(3), 258-270. https://doi.org/10.1111/j.1365-3040.2007.01641.x
- Ainsworth, E. A., Rogers, A., Nelson, R. and Long, S. P., 2004: Testing the "source-sink" hypothesis of downregulation of photosynthesis in elevated [co2] in the field with single gene substitutions in glycine max. Agricultural and Forest Meteorology 122(1), 85-94. https://doi.org/10.1016/j.agrformet.2003.09.002
- Apple, M. E., Olszyk, D. M., Ormrod, D. P., Lewis, J., Southworth, D. and Tingey, D. T., 2000: Morphology and stomatal function of douglas fir needles exposed to climate change: Elevated co2 and temperature1. International Journal of Plant Sciences 161(1), 127-132. https://doi.org/10.1086/314237
- Aranjuelo, I., Perez, P., Hernandez, L., Irigoyen, J. J., Zita, G., Martinez-Carrasco, R. and Sanchez-Diaz, M., 2005: The response of nodulated alfalfa to water supply, temperature and elevated co2: Photosynthetic downregulation. Physiologia Plantarum 123(3), 348-358. https://doi.org/10.1111/j.1399-3054.2005.00459.x
- Arp, W. and Drake, B., 1991: Increased photosynthetic capacity of scirpus olneyi after 4 years of exposure to elevated co2. Plant, Cell & Environment 14(9), 1003-1006. https://doi.org/10.1111/j.1365-3040.1991.tb00971.x
- Badeck, F.-W., Liozon, R., Gently, B., Meyer, S. and Saugier, B., 1997: On the significance of internal resistance in tree leaves for gas exchange under elevated co2. Proceeding of a International conference on Impact of Global Change on Tree Physiology and Forest Ecosystems. Wageningen, The Netherlands, Forestry Sciences 52, 35-39.
- Beerling, D., 1997: Carbon isotope discrimination and stomatal responses of mature pinus sylvestris trees exposed in situ for three years to elevated co2 and temperature. Acta Oecologica 18(6), 697-712. https://doi.org/10.1016/S1146-609X(97)80052-5
- Beerling, D. J. and Chaloner, W. G., 1993: The impact of atmospheric co2 and temperature changes on stomatal density: Observation from quercus robur lammas leaves. Annals of Botany 71(3), 231-235. https://doi.org/10.1006/anbo.1993.1029
- Bettarini, I., Vaccari, F. P. and Miglietta, F., 1998: Elevated co2 concentrations and stomatal density: Observations from 17 plant species growing in a co2 spring in central italy. Global Change Biology 4(1), 17-22. https://doi.org/10.1046/j.1365-2486.1998.00098.x
- Bosabalidis, A. M. and Kofidis, G., 2002: Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Science 163(2), 375-379. https://doi.org/10.1016/S0168-9452(02)00135-8
- Bota, J., Medrano, H. and Flexas, J., 2004: Is photosynthesis limited by decreased rubisco activity and rubp content under progressive water stress? New Phytologist 162(3), 671-681. https://doi.org/10.1111/j.1469-8137.2004.01056.x
- Bray, S. and Reid, D. M., 2002: The effect of salinity and co2enrichment on the growth and anatomy of the second trifoliate leaf ofphaseolus vulgaris. Canadian Journal of Botany 80(4), 349-359. https://doi.org/10.1139/b02-018
- Bunce, J., 1992: Stomatal conductance, photosynthesis and respiration of temperate deciduous tree seedlings grown outdoors at an elevated concentration of carbon dioxide. Plant, Cell & Environment 15(5), 541-549. https://doi.org/10.1111/j.1365-3040.1992.tb01487.x
- Campbell, G. S. and Norman, J. M., 1998: An introduction to environmental biophysics (2nd ed.). Springer Science & Business Media, 286pp.
- Cavusoglu, K., Kilic, S. and Kabar, K., 2007: Some morphological and anatomical observations during alleviation of salinity (naci) stress on seed germination and seedling growth of barley by polyamines. Acta Physiologiae Plantarum 29(6), 551-557. https://doi.org/10.1007/s11738-007-0066-x
- Ceulemans, R. and Deraedt, W., 1999: Production physiology and growth potential of poplars under short-rotation forestry culture. Forest Ecology and Management 121(1), 9-23. https://doi.org/10.1016/S0378-1127(98)00564-7
- Ceulemans, R. and Mousseau, M., 1994: Tansley review no. 71 effects of elevated atmospheric co2on woody plants. New Phytologist 127(3), 425-446. https://doi.org/10.1111/j.1469-8137.1994.tb03961.x
- Ceulemans, R., Praet, L. v. and Jiang, X., 1995: Effects of co2 enrichment, leaf position and clone on stomatal index and epidermal cell density in poplar (populus). New Phytologist 131(1), 99-107.
- Curtis, P., 1996: A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant, Cell & Environment 19(2), 127-137. https://doi.org/10.1111/j.1365-3040.1996.tb00234.x
- Curtis, P. S. and Lauchli, A., 1987: The effect of moderate salt stress on leaf anatomy in hibiscus cannabinus (kenaf) and its relation to leaf area. American Journal of Botany 74(4), 538-542. https://doi.org/10.2307/2443833
- De Graaff, M. A., Van Groenigen, K. J., Six, J., Hungate, B. and van Kessel, C., 2006: Interactions between plant growth and soil nutrient cycling under elevated co2: A meta-analysis. Global Change Biology 12(11), 2077-2091. https://doi.org/10.1111/j.1365-2486.2006.01240.x
- DeLucia, E. H. and Thomas, R. B., 2000: Photosynthetic responses to co2 enrichment of four hardwood species in a forest understory. Oecologia 122(1), 11-19. https://doi.org/10.1007/PL00008827
- Drake, B., Leadley, P., Arp, W., Nassiry, D. and Curtis, P., 1989: An open top chamber for field studies of elevated atmospheric co 2 concentration on saltmarsh vegetation. Functional Ecology 3(3), 363-371. https://doi.org/10.2307/2389377
- Drake, B. G., Gonzalez-Meler, M. A. and Long, S. P., 1997: More efficient plants: A consequence of rising atmospheric co2? Annual Review of Plant Biology 48(1), 609-639. https://doi.org/10.1146/annurev.arplant.48.1.609
- El Kohen, A., Venet, L. and Mousseau, M., 1993: Growth and photosynthesis of two deciduous forest species at elevated carbon dioxide. Functional Ecology 7(4), 480-486. https://doi.org/10.2307/2390035
- Field, C., Jackson, R. and Mooney, H., 1995: Stomatal responses to increased co2: Implications from the plant to the global scale. Plant, Cell & Environment 18(10), 1214-1225. https://doi.org/10.1111/j.1365-3040.1995.tb00630.x
- Flexas, J., Bota, J., Cifre, J., Mariano E. J., Galmes, J., Gulias, J., Leei, E. K., Martines-Canellas, S. F., Moreno M. T., Rivas-Carbo, M., Riera, D., Sampol, R., and Medrano, H., 2004: Understanding down-regulation of photosynthesis under water stress: Future prospects and searching for physiological tools for irrigation management. Annals of applied Biology 144(3), 273-283. https://doi.org/10.1111/j.1744-7348.2004.tb00343.x
- Franks, P. J. and Beerling, D. J., 2009: Maximum leaf conductance driven by co2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences 106(25), 10343-10347. https://doi.org/10.1073/pnas.0904209106
- Goodfellow, J., Eamus, D. and Duff, G., 1997: Diurnal and seasonal changes in the impact of co2 enrichment on assimilation, stomatal conductance and growth in a longterm study of mangifera indica in the wet-dry tropics of australia. Tree Physiology 17(5), 291-299. https://doi.org/10.1093/treephys/17.5.291
- Grassi, G., Vicinelli, E., Ponti, F., Cantoni, L. and Magnani, F., 2005: Seasonal and interannual variability of photosynthetic capacity in relation to leaf nitrogen in a deciduous forest plantation in northern italy. Tree Physiology 25(3), 349-360. https://doi.org/10.1093/treephys/25.3.349
- Gunderson, C., Norby, R. and Wullschleger, S., 1993: Foliar gas exchange responses of two deciduous hardwoods during 3 years of growth in elevated co2: No loss of photosynthetic enhancement. Plant, Cell & Environment 16(7), 797-807. https://doi.org/10.1111/j.1365-3040.1993.tb00501.x
- Hebeisen, T., A. Luscher, S. Zanetti, B. Fischer, U. Hartwig, M. Frehner, G. Hendrey, and H. Blum, 1997: Growth response of trifolium repens l. And lolium perenne l. As monocultures and bi-species mixture to free air co2 enrichment and management. Global Change Biology 3(2), 149-160. https://doi.org/10.1046/j.1365-2486.1997.00073.x
- Herrick, J. and Thomas, R., 2001: No photosynthetic downregulation in sweetgum trees (liquidambar styraciflua l.) after three years of co2 enrichment at the duke forest face experiment. Plant, Cell & Environment 24(1), 53-64. https://doi.org/10.1046/j.1365-3040.2001.00652.x
- Hocking, P. and Meyer, C., 1991: Effects of co2 enrichment and nitrogen stress on growth, and partitioning of dry matter and nitrogen in wheat and maize. Functional Plant Biology 18(4), 339-356.
- Idso, S. B. and Kimball, B. A., 2001: Co2 enrichment of sour orange trees: 13 years and counting. Environmental and Experimental Botany 46(2), 147-153. https://doi.org/10.1016/S0098-8472(01)00093-4
- IPCC, Climate change 2013: The physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. United Kingdom and New York, NY, USA: Cambridge University Press, 2013.
- Irigoyen, J. J., Goicoechea, N., Antolin, M. C., Pascual, I., Sanchez-Diaz, M., Aguirreolea, J. and Morales, F., 2014: Growth, photosynthetic acclimation and yield quality in legumes under climate change simulations: An updated survey. Plant Science 226, 22-29. https://doi.org/10.1016/j.plantsci.2014.05.008
- Lee, J. C., Kim, D. H., Kim, G. N., Kim, P. G., Han, S. H., 2012: Long-term climate change research facility for trees: Co2-enrhiched open top chamber system. Korean Journal of Agricultural and Forest Meteorology 14(1), 19-27. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2012.14.1.019
- Jones, J. B., Jr.;, Wolf, B. and Mills, H. A., 1991: Plant analysis handbook. A practical sampling, preparation, analysis, and interpretation guide. Micro-Macro Publishing, Inc., 213pp.
- Kellomaki, S. and Wang, K.-Y., 1996: Photosynthetic responses to needle water potentials in scots pine after a four-year exposure to elevated co2 and temperature. Tree Physiology 16(9), 765-772. https://doi.org/10.1093/treephys/16.9.765
- Kemp, P. R. and Cunningham, G. L., 1981: Light, temperature and salinity effects on growth, leaf anatomy and photosyntesis of distichlis spicata (l.) greene. American Journal of Botany 68(4), 507-516. https://doi.org/10.2307/2443026
- Kubinova, L., 1991: Stomata and mesophyll characteristics of barley leaf as affected by light: Stereological analysis. Journal of Experimental Botany 42(8), 995-1001. https://doi.org/10.1093/jxb/42.8.995
- Kwon, B., Kim, H. S., Park, P. S. and Yi, M. J., 2014: Nutrient use traits (strategies) of carpinus cordata saplings growing under different forest stand conditions. Korean Journal of Agricultural and Forest Meteorology in press. (in Korean with English abstract).
-
Leadley, P. W. and Drake, B. G., 1993: Open top chambers for exposing plant canopies to elevated co2 concentration and for measuring net gas exchange.
$CO_{2}$ and biosphere Advances in Vegetation Science 14, 3-16. - Leakey, A. D. B., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P. and Ort, D. R., 2009: Elevated co2 effects on plant carbon, nitrogen, and water relations: Six important lessons from face. Journal of Experimental Botany 60(10), 2859-2876. https://doi.org/10.1093/jxb/erp096
- Lewis, J. D., Tissue, D. T. and Strain, B. R., 1996: Seasonal response of photosynthesis to elevated co2 in loblolly pine (pinus taeda l.) over two growing seasons. Global Change Biology 2(2), 103-114. https://doi.org/10.1111/j.1365-2486.1996.tb00055.x
- Lichtenthaler, H., Buschmann, C., Doll, M., Fietz, H.-J., Bach, T., Kozel, U., Meier, D. and Rahmsdorf, U., 1981: Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynthesis research 2(2), 115-141. https://doi.org/10.1007/BF00028752
- Limin, Y., Mei, H., Guangsheng, Z. and Jiandong, L., 2007: The changes in water-use efficiency and stoma density of leymus chinensis along northeast china transect. Acta Ecologica Sinica 27(1), 16-23. https://doi.org/10.1016/S1872-2032(07)60006-7
- Lin, J., Jach, M. and Ceulemans, R., 2001: Stomatal density and needle anatomy of scots pine (pinus sylvestris) are affected by elevated co2. New Phytologist 150(3), 665-674. https://doi.org/10.1046/j.1469-8137.2001.00124.x
- Liu, M., Xu, Z., Guo, S., Tang, C., Liu, X. and Jao, X., 2014: Evaluation of leaf morphology, structure and biochemical substance of balloon flower (platycodon grandiflorum (jacq.) a. Dc.) plantlets in vitro under different light spectra. Scientia Horticulturae 174, 112-118. https://doi.org/10.1016/j.scienta.2014.05.006
- Luomala, E., Laitinen, K., Sutinen, S., Kellomaki, S. and Vapaavuori, E., 2005: Stomatal density, anatomy and nutrient concentrations of scots pine needles are affected by elevated co2 and temperature. Plant, Cell & Environment 28(6), 733-749. https://doi.org/10.1111/j.1365-3040.2005.01319.x
- McCarthy, H. R., Oren, R., Johnsen, K. H., Gallet- Budynek, A., Pritchard, S. G., Cook, C. W., LaDeau, S. L., Jackson, R. B. and Finzi, A. C., 2010: Re-assessment of plant carbon dynamics at the duke free-air co2 enrichment site: Interactions of atmospheric [co2] with nitrogen and water availability over stand development. New Phytologist 185(2), 514-528. https://doi.org/10.1111/j.1469-8137.2009.03078.x
- Medlyn, B., Badeck, F. W., De Pury, D., Barton, C., Broadmeadow, M., Ceulemans, R., De Angelis, P., Forstreuter, M., Jach, M. and Kellomaki, S., 1999: Effects of elevated [co2] on photosynthesis in european forest species: A meta-analysis of model parameters. Plant, Cell & Environment 22(12), 1475-1495. https://doi.org/10.1046/j.1365-3040.1999.00523.x
- Miglietta, F., Peressotti, A., Vaccari, F. P., Zaldei, A., DeAngelis, P. and Scarascia-Mugnozza, G., 2001: Freeair co2 enrichment (face) of a poplar plantation: The popface fumigation system. New Phytologist 150(2), 465-476. https://doi.org/10.1046/j.1469-8137.2001.00115.x
- Morison, J. I. L., 1998: Stomatal response to increased co2 concentration. Journal of Experimental Botany 49(Special Issue), 443-452. https://doi.org/10.1093/jxb/49.Special_Issue.443
- Norby, R. J., DeLucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P., King, J. S., Ledford, J., McCarthy, H. R., Moore, D. J. and Ceulemans, R., 2005: Forest response to elevated co2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America 102(50), 18052-18056. https://doi.org/10.1073/pnas.0509478102
- Norby, R. J., Wullschleger, S. D., Gunderson, C. A. and Nietch, C. T., 1995: Increased growth efficiency of quercus alba trees in a co2-enriched atmosphere. New Phytologist 131(1), 91-97. https://doi.org/10.1111/j.1469-8137.1995.tb03058.x
- Norby, R. J. and Zak, D. R., 2011: Ecological lessons from free-air co2 enrichment (face) experiments. Annual review of ecology, evolution, and systematics 42(1), 181. https://doi.org/10.1146/annurev-ecolsys-102209-144647
- Nowak, R. S., Ellsworth, D. S. and Smith, S. D., 2004: Functional responses of plants to elevated atmospheric co2-do photosynthetic and productivity data from face experiments support early predictions? New Phytologist 162(2), 253-280. https://doi.org/10.1111/j.1469-8137.2004.01033.x
- Ogaya, R., Llorens, L. and Penuelas, J., 2011: Density and length of stomatal and epidermal cells in" living fossil" trees grown under elevated co 2 and a polar light regime. Acta Oecologica 37(4), 381-385. https://doi.org/10.1016/j.actao.2011.04.010
- Oren, R., Ellsworth, D. S., Johnsen, K. H., Phillips, N., Ewers, B. E., Maier, C., Schafer, K. V., McCarthy, H., Hendrey, G. and McNulty, S. G., 2001: Soil fertility limits carbon sequestration by forest ecosystems in a co2-enriched atmosphere. Nature 411(6836), 469-472. https://doi.org/10.1038/35078064
- Palmroth, S., Katul, G. G., Maier, C. A., Ward, E., Manzoni, S. and Vico, G., 2013: On the complementary relationship between marginal nitrogen and water-use efficiencies among pinus taeda leaves grown under ambient and co2-enriched environments. Annals of Botany 111(3), 467-477. https://doi.org/10.1093/aob/mcs268
- Penuelas, J. and Matamala, R., 1990: Changes in n and s leaf content, stomatal density and specific leaf area of 14 plant species during the last three centuries of co2 increase. Journal of Experimental Botany 41(9), 1119-1124. https://doi.org/10.1093/jxb/41.9.1119
- Picon, C., Guehl, J. and Ferhi, A., 1996: Leaf gas exchange and carbon isotope composition responses to drought in a drought-avoiding (pinus pinaster) and a droughttolerant (quercus petraea) species under present and elevated atmospheric co2 concentrations. Plant, Cell & Environment 19(2), 182-190. https://doi.org/10.1111/j.1365-3040.1996.tb00239.x
- Poorter, H. and Navas, M. L., 2003: Plant growth and competition at elevated co2: On winners, losers and functional groups. New Phytologist 157(2), 175-198. https://doi.org/10.1046/j.1469-8137.2003.00680.x
- Radoglou, K. and Jarvis, P., 1990: Effects of co2 enrichment on four poplar clones. Ii. Leaf surface properties. Annals of Botany 65(6), 627-632. https://doi.org/10.1093/oxfordjournals.aob.a087979
- Reid, C. D., Maherali, H., Johnson, H. B., Smith, S. D., Wullschleger, S. D. and Jackson, R. B., 2003: On the relationship between stomatal characters and atmospheric co2. Geophysical Research Letters 30(19).
- Rey, A. and Jarvis, P., 1998: Long-term photosynthetic acclimation to increased atmospheric co2 concentration in young birch (betula pendula) trees. Tree Physiology 18(7), 441-450. https://doi.org/10.1093/treephys/18.7.441
- Rogers, A. and Ellsworth, D., 2002: Photosynthetic acclimation of pinus taeda (loblolly pine) to long-term growth in elevated pco2 (face). Plant, Cell & Environment 25(7), 851-858. https://doi.org/10.1046/j.1365-3040.2002.00868.x
- Samarakoon, A. and Gifford, R., 1996: Elevated co2 effects on water use and growth of maize in wet and drying soil. Functional Plant Biology 23(1), 53-62.
- Saxe, H., Ellsworth, D. S. and Heath, J., 1998: Tree and forest functioning in an enriched co2 atmosphere. New Phytologist 139(3), 395-436. https://doi.org/10.1046/j.1469-8137.1998.00221.x
- Scarascia-Mugnozza, G., Angelis, P. D., Matteucci, G. and Valentini, R., 1996: Long-term exposure to elevated [co2] in a natural quercus ilex l. Community: Net photosynthesis and photochemical efficiency of psii at different levels of water stress. Plant, Cell & Environment 19(6), 643-654. https://doi.org/10.1111/j.1365-3040.1996.tb00399.x
- Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D. and Singsaas, E. L., 2007: Fitting photosynthetic carbon dioxide response curves for c3 leaves. Plant, Cell & Environment 30(9), 1035-1040. https://doi.org/10.1111/j.1365-3040.2007.01710.x
- Son, Y., Kim, R. H., Lee, K.-H., Pyo, J. K., Kim, S. W., Hwang, J. S., Lee, S. J. and Park, H., 2014: Carbon Emission Factors Biomass Allometric Equations by Species in Korea. 14-08, Korea Forest Research Institute, 97pp.
- Stewart, J. D. and Hoddinott, J., 1993: Photosynthetic acclimation to elevated atmospheric carbon dioxide and uv irradiation in pinus banksiana. Physiologia Plantarum 88(3), 493-500. https://doi.org/10.1111/j.1399-3054.1993.tb01364.x
- Taylor, G., Ceulemans, R., Ferris, R., Gardner, S. and Shao, B., 2001: Increased leaf area expansion of hybrid poplar in elevated co2 from controlled environments to opentop chambers and to face. Environmental Pollution 115(3), 463-472. https://doi.org/10.1016/S0269-7491(01)00235-4
- Teskey, R., 1995: A field study of the effects of elevated co2 on carbon assimilation, stomatal conductance and leaf and branch growth of pinus taeda trees. Plant, Cell & Environment 18(5), 565-573. https://doi.org/10.1111/j.1365-3040.1995.tb00556.x
- Tezara, W., Mitchell, V., Driscoll, S. and Lawlor, D., 2002: Effects of water deficit and its interaction with co2 supply on the biochemistry and physiology of photosynthesis in sunflower. Journal of Experimental Botany 53(375), 1781-1791. https://doi.org/10.1093/jxb/erf021
- Thomas, J. F. and Harvey, C. N., 1983: Leaf anatomy of four species grown under continuous co2 enrichment. Botanical Gazette 144(3), 303-309. https://doi.org/10.1086/337377
- Tissue, D. T., Griffin, K. L. and Ball, J. T., 1999: Photosynthetic adjustment in field-grown ponderosa pine trees after six years of exposure to elevated co2. Tree Physiology 19(4-5), 221-228. https://doi.org/10.1093/treephys/19.4-5.221
- Tissue, D. T., Griffin, K. L., Turnbull, M. H. and Whitehead, D., 2001: Canopy position and needle age affect photosynthetic response in field-grown pinus radiata after five years of exposure to elevated carbon dioxide partial pressure. Tree Physiology 21(12-13), 915-923. https://doi.org/10.1093/treephys/21.12-13.915
- Turnbull, M., Tissue, D., Griffin, K., Rogers, G. and Whitehead, D., 1998: Photosynthetic acclimation to longterm exposure to elevated co2 concentration in pinus radiata d. Don. Is related to age of needles. Plant, Cell & Environment 21(10), 1019-1028. https://doi.org/10.1046/j.1365-3040.1998.00374.x
- Uddling, J. and Wallin, G., 2012: Interacting effects of elevated co2 and weather variability on photosynthesis of mature boreal norway spruce agree with biochemical model predictions. Tree Physiology 32(12), 1509-1521. https://doi.org/10.1093/treephys/tps086
- Urban, O., 2003: Physiological impacts of elevated co2 concentration ranging from molecular to whole plant responses. Photosynthetica 41(1), 9-20. https://doi.org/10.1023/A:1025891825050
- Wang, D., Heckathorn, S., Wang, X. and Philpott, S., 2012: A meta-analysis of plant physiological and growth responses to temperature and elevated co2. Oecologia 169(1), 1-13. https://doi.org/10.1007/s00442-011-2172-0
- Will, R. E. and Ceulemans, R., 1997: Effects of elevated co2 concentration on photosynthesis, respiration and carbohydrate status of coppice populus hybrids. Physiologia Plantarum 100(4), 933-939. https://doi.org/10.1111/j.1399-3054.1997.tb00020.x
- Woodward, F. I. and Kelly, C. K., 1995: The influence of co2 concentration on stomatal density. New Phytologist 131(3), 311-327. https://doi.org/10.1111/j.1469-8137.1995.tb03067.x
- Xu, Z. and Zhou, G., 2008: Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany 59(12), 3317-3325. https://doi.org/10.1093/jxb/ern185
- Zak, D. R., Holmes, W. E., Finzi, A. C., Norby, R. J. and Schlesinger, W. H., 2003: Soil nitrogen cycling under elevated co2: A synthesis of forest face experiments. Ecological applications 13(6), 1508-1514. https://doi.org/10.1890/03-5055
- Zak, D. R., Pregitzer, K. S., Curtis, P. S., Teeri, J. A., Fogel, R. and Randlett, D. L., 1993: Elevated atmospheric co2 and feedback between carbon and nitrogen cycles. Plant and Soil 151(1), 105-117. https://doi.org/10.1007/BF00010791
- Zhou, Y., Schaub, M., Shi, L., Guo, Z., Fan, A., Yan, C., Wang, X., Wang, C., Han, S.-J. and Li, M.-H., 2012: Non-linear response of stomata in pinus koraiensis to tree age and elevation. Trees 26(4), 1389-1396. https://doi.org/10.1007/s00468-012-0713-8
- Zotz, G., Pepin, S. and Korner, C., 2005: No down-regulation of leaf photosynthesis in mature forest trees after three years of exposure to elevated co2. Plant Biology 7(4), 369-374. https://doi.org/10.1055/s-2005-837635
Cited by
- Does the increase in ambient CO2 concentration elevate allergy risks posed by oak pollen? vol.62, pp.9, 2018, https://doi.org/10.1007/s00484-018-1558-7