DOI QR코드

DOI QR Code

Responses of Native Trees Species in Korea under Elevated Carbon Dioxide Condition - Open Top Chamber Experiment

상부 개방형 온실을 이용한 대기 중 이산화탄소 농도 증가가 우리나라 자생 수종에 미치는 형태적, 생리적 영향

  • Ryu, Daun (Department of Forest Sciences, Seoul National University) ;
  • Bae, Jinho (Department of Forest Sciences, Seoul National University) ;
  • Park, Juhan (Department of Forest Sciences, Seoul National University) ;
  • Cho, Sungsik (Department of Forest Sciences, Seoul National University) ;
  • Moon, Minkyu (National Center for AgroMeteorology, Seoul National University) ;
  • Oh, Chang-Young (Korea Forest Research Institute) ;
  • Kim, Hyun Seok (Department of Forest Sciences, Seoul National University)
  • 류다운 (서울대학교 산림과학부 산림환경학 전공) ;
  • 배진호 (서울대학교 산림과학부 산림환경학 전공) ;
  • 박주한 (서울대학교 산림과학부 산림환경학 전공) ;
  • 조성식 (서울대학교 산림과학부 산림환경학 전공) ;
  • 문민규 (국가농림기상센터) ;
  • 오창영 (국립산림과학원 산림유전자원부) ;
  • 김현석 (서울대학교 산림과학부 산림환경학 전공)
  • Received : 2014.08.27
  • Accepted : 2014.09.29
  • Published : 2014.09.30

Abstract

The physiological responses of three common temperate species, Pinus densiflora, Fraxinus rhynchophylla, Sorbus alnifolia to elevated $CO_2$ was investigated using open top chambers with different $CO_2$ concentrations. Morphological (stomatal size, density and area) and physiological characteristics (maximum rates of photosynthesis, carboxylation and electron transport) were compared among trees grown under ambient, ambient ${\times}1.4$ (~550 ppm) and ambient ${\times}1.8$ (~700 ppm) $CO_2$ concentrations for last four years. Morphological responses were different among species. F. rhynchophyllar increased their stomatal size and S. alnifolia had higher stomatal density under elevated $CO_2$ than ambient. Stomatal area decreased in P. densiflora, whereas it increased in S. alnifolia. However, the maximum photosynthesis rate increased in all species up to 43.5% by S. alnifolia under elevated $CO_2$ and the enhancement increased with time. Even with four years of exposure to elevated $CO_2$, there was no sign of acclimation in the maximum carboxylation rate and the maximum electron transport rates in all species. Especially, S. alnifolia even showed the temporary increase of photosynthetic capacities in spring, when leaf nitrogen concentration was high with new leaf development. There was no significant differences in diameter growth rate in any species due to high variation in their tree sizes, however accumulated diameter and biomass for four years showed significantly increment in all species under elevated $CO_2$. For example, S. alnifolia showed 59% increase in diameter at the ambient ${\times}1.8$ (~700 ppm) compared to ambient.

상부 개방형 온실을 이용하여 현재 대기의 이산화탄소 농도(ambient), 현재 농도의 1.4배(~550 ppm) 및 1.8배(~700 ppm)로 증가된 미래 대기 환경에서 약 4년간 생장한 소나무, 물푸레나무, 팥배나무를 대상으로 하여 대기 중 이산화탄소 농도 증가에 대한 수목의 반응을 알아보고자 하였다. 이를 위해 2013년 4월~9월의 연구기간 동안 각 수종의 기공 크기 밀도 면적, 최대 광합성 속도, 최대 카르복실화 속도, 최대 전자전달 속도 및 직경생장을 측정하였다. 이산화탄소 농도가 증가함에 따라 물푸레나무의 기공 크기가 유의하게 증가하였고 팥배나무의 기공 밀도가 증가하였다. 기공 면적의 경우 소나무는 감소한 반면 팥배나무는 증가하는 등 수종에 따라 다양한 반응을 보였다. 하지만 최대 광합성 속도는 모든 수종에서 대기 중 이산화탄소 농도에 따라 대체로 증가하는 경향을 나타냈는데 팥배나무에서는 계절이 지남에 따라 그 차이가 더 커져 최대 43.5%까지 증가하였다. 그러나 4년에 걸친 비교적 장기간의 폭로에도 불구하고 이산화탄소 시비에 의한 최대 카르복실화 속도와 최대 전자전달 속도의 저감효과는 모든 수종에서 나타나지 않았다. 특히 팥배나무의 경우 잎의 질소 농도가 높아지는 개엽 시기에는 높은 이산화탄소 농도하에서 일시적으로 최대 카르복실화 속도와 최대 전자전달 속도가 향상되어 저감과는 반대의 양상을 나타냈다. 모든 수종에서 개체목간의 변이로 인해 연구 기간 중 이산화탄소 농도에 따른 직경 생장량은 유의한 차이를 보이지 않았으나 약 4년간 누적된 직경의 크기와 생체량에서는 모든 수종에서 유의한 차이를 보였으며 팥배나무 직경의 경우 대조구에 비해 1.8배에서 최대 59.0%까지 높게 나타났다.

Keywords

References

  1. Adam, N. R., Wall, G. W., Kimball, B. A., Idso, S. B. and Webber, A. N., 2004: Photosynthetic down-regulation over long-term co2 enrichment in leaves of sour orange (citrus aurantium) trees. New Phytologist 163(2), 341-347. https://doi.org/10.1111/j.1469-8137.2004.01104.x
  2. Adams, M., Campbell, R., Allen, H. and Davey, C., 1987: Root and foliar nutrient concentrations in loblolly pine: Effects of season, site, and fertilization. Forest Science 33(4), 984-996.
  3. Ainsworth, E. A., Davey, P. A., Bernacchi, C. J., Dermody, O. C., Heaton, E. A., Moore, D. J., Morgan, P. B., Naidu, S. L., Yoo Ra, H. S. and Zhu, X. G., 2002: A meta-analysis of elevated [co2] effects on soybean (glycine max) physiology, growth and yield. Global Change Biology 8(8), 695-709. https://doi.org/10.1046/j.1365-2486.2002.00498.x
  4. Ainsworth, E. A. and Long, S. P., 2005: What have we learned from 15 years of free-air co2 enrichment (face)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising co2. New Phytologist 165(2), 351-372.
  5. Ainsworth, E. A. and Rogers, A., 2007: The response of photosynthesis and stomatal conductance to rising [co2]: Mechanisms and environmental interactions. Plant, Cell & Environment 30(3), 258-270. https://doi.org/10.1111/j.1365-3040.2007.01641.x
  6. Ainsworth, E. A., Rogers, A., Nelson, R. and Long, S. P., 2004: Testing the "source-sink" hypothesis of downregulation of photosynthesis in elevated [co2] in the field with single gene substitutions in glycine max. Agricultural and Forest Meteorology 122(1), 85-94. https://doi.org/10.1016/j.agrformet.2003.09.002
  7. Apple, M. E., Olszyk, D. M., Ormrod, D. P., Lewis, J., Southworth, D. and Tingey, D. T., 2000: Morphology and stomatal function of douglas fir needles exposed to climate change: Elevated co2 and temperature1. International Journal of Plant Sciences 161(1), 127-132. https://doi.org/10.1086/314237
  8. Aranjuelo, I., Perez, P., Hernandez, L., Irigoyen, J. J., Zita, G., Martinez-Carrasco, R. and Sanchez-Diaz, M., 2005: The response of nodulated alfalfa to water supply, temperature and elevated co2: Photosynthetic downregulation. Physiologia Plantarum 123(3), 348-358. https://doi.org/10.1111/j.1399-3054.2005.00459.x
  9. Arp, W. and Drake, B., 1991: Increased photosynthetic capacity of scirpus olneyi after 4 years of exposure to elevated co2. Plant, Cell & Environment 14(9), 1003-1006. https://doi.org/10.1111/j.1365-3040.1991.tb00971.x
  10. Badeck, F.-W., Liozon, R., Gently, B., Meyer, S. and Saugier, B., 1997: On the significance of internal resistance in tree leaves for gas exchange under elevated co2. Proceeding of a International conference on Impact of Global Change on Tree Physiology and Forest Ecosystems. Wageningen, The Netherlands, Forestry Sciences 52, 35-39.
  11. Beerling, D., 1997: Carbon isotope discrimination and stomatal responses of mature pinus sylvestris trees exposed in situ for three years to elevated co2 and temperature. Acta Oecologica 18(6), 697-712. https://doi.org/10.1016/S1146-609X(97)80052-5
  12. Beerling, D. J. and Chaloner, W. G., 1993: The impact of atmospheric co2 and temperature changes on stomatal density: Observation from quercus robur lammas leaves. Annals of Botany 71(3), 231-235. https://doi.org/10.1006/anbo.1993.1029
  13. Bettarini, I., Vaccari, F. P. and Miglietta, F., 1998: Elevated co2 concentrations and stomatal density: Observations from 17 plant species growing in a co2 spring in central italy. Global Change Biology 4(1), 17-22. https://doi.org/10.1046/j.1365-2486.1998.00098.x
  14. Bosabalidis, A. M. and Kofidis, G., 2002: Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Science 163(2), 375-379. https://doi.org/10.1016/S0168-9452(02)00135-8
  15. Bota, J., Medrano, H. and Flexas, J., 2004: Is photosynthesis limited by decreased rubisco activity and rubp content under progressive water stress? New Phytologist 162(3), 671-681. https://doi.org/10.1111/j.1469-8137.2004.01056.x
  16. Bray, S. and Reid, D. M., 2002: The effect of salinity and co2enrichment on the growth and anatomy of the second trifoliate leaf ofphaseolus vulgaris. Canadian Journal of Botany 80(4), 349-359. https://doi.org/10.1139/b02-018
  17. Bunce, J., 1992: Stomatal conductance, photosynthesis and respiration of temperate deciduous tree seedlings grown outdoors at an elevated concentration of carbon dioxide. Plant, Cell & Environment 15(5), 541-549. https://doi.org/10.1111/j.1365-3040.1992.tb01487.x
  18. Campbell, G. S. and Norman, J. M., 1998: An introduction to environmental biophysics (2nd ed.). Springer Science & Business Media, 286pp.
  19. Cavusoglu, K., Kilic, S. and Kabar, K., 2007: Some morphological and anatomical observations during alleviation of salinity (naci) stress on seed germination and seedling growth of barley by polyamines. Acta Physiologiae Plantarum 29(6), 551-557. https://doi.org/10.1007/s11738-007-0066-x
  20. Ceulemans, R. and Deraedt, W., 1999: Production physiology and growth potential of poplars under short-rotation forestry culture. Forest Ecology and Management 121(1), 9-23. https://doi.org/10.1016/S0378-1127(98)00564-7
  21. Ceulemans, R. and Mousseau, M., 1994: Tansley review no. 71 effects of elevated atmospheric co2on woody plants. New Phytologist 127(3), 425-446. https://doi.org/10.1111/j.1469-8137.1994.tb03961.x
  22. Ceulemans, R., Praet, L. v. and Jiang, X., 1995: Effects of co2 enrichment, leaf position and clone on stomatal index and epidermal cell density in poplar (populus). New Phytologist 131(1), 99-107.
  23. Curtis, P., 1996: A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant, Cell & Environment 19(2), 127-137. https://doi.org/10.1111/j.1365-3040.1996.tb00234.x
  24. Curtis, P. S. and Lauchli, A., 1987: The effect of moderate salt stress on leaf anatomy in hibiscus cannabinus (kenaf) and its relation to leaf area. American Journal of Botany 74(4), 538-542. https://doi.org/10.2307/2443833
  25. De Graaff, M. A., Van Groenigen, K. J., Six, J., Hungate, B. and van Kessel, C., 2006: Interactions between plant growth and soil nutrient cycling under elevated co2: A meta-analysis. Global Change Biology 12(11), 2077-2091. https://doi.org/10.1111/j.1365-2486.2006.01240.x
  26. DeLucia, E. H. and Thomas, R. B., 2000: Photosynthetic responses to co2 enrichment of four hardwood species in a forest understory. Oecologia 122(1), 11-19. https://doi.org/10.1007/PL00008827
  27. Drake, B., Leadley, P., Arp, W., Nassiry, D. and Curtis, P., 1989: An open top chamber for field studies of elevated atmospheric co 2 concentration on saltmarsh vegetation. Functional Ecology 3(3), 363-371. https://doi.org/10.2307/2389377
  28. Drake, B. G., Gonzalez-Meler, M. A. and Long, S. P., 1997: More efficient plants: A consequence of rising atmospheric co2? Annual Review of Plant Biology 48(1), 609-639. https://doi.org/10.1146/annurev.arplant.48.1.609
  29. El Kohen, A., Venet, L. and Mousseau, M., 1993: Growth and photosynthesis of two deciduous forest species at elevated carbon dioxide. Functional Ecology 7(4), 480-486. https://doi.org/10.2307/2390035
  30. Field, C., Jackson, R. and Mooney, H., 1995: Stomatal responses to increased co2: Implications from the plant to the global scale. Plant, Cell & Environment 18(10), 1214-1225. https://doi.org/10.1111/j.1365-3040.1995.tb00630.x
  31. Flexas, J., Bota, J., Cifre, J., Mariano E. J., Galmes, J., Gulias, J., Leei, E. K., Martines-Canellas, S. F., Moreno M. T., Rivas-Carbo, M., Riera, D., Sampol, R., and Medrano, H., 2004: Understanding down-regulation of photosynthesis under water stress: Future prospects and searching for physiological tools for irrigation management. Annals of applied Biology 144(3), 273-283. https://doi.org/10.1111/j.1744-7348.2004.tb00343.x
  32. Franks, P. J. and Beerling, D. J., 2009: Maximum leaf conductance driven by co2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences 106(25), 10343-10347. https://doi.org/10.1073/pnas.0904209106
  33. Goodfellow, J., Eamus, D. and Duff, G., 1997: Diurnal and seasonal changes in the impact of co2 enrichment on assimilation, stomatal conductance and growth in a longterm study of mangifera indica in the wet-dry tropics of australia. Tree Physiology 17(5), 291-299. https://doi.org/10.1093/treephys/17.5.291
  34. Grassi, G., Vicinelli, E., Ponti, F., Cantoni, L. and Magnani, F., 2005: Seasonal and interannual variability of photosynthetic capacity in relation to leaf nitrogen in a deciduous forest plantation in northern italy. Tree Physiology 25(3), 349-360. https://doi.org/10.1093/treephys/25.3.349
  35. Gunderson, C., Norby, R. and Wullschleger, S., 1993: Foliar gas exchange responses of two deciduous hardwoods during 3 years of growth in elevated co2: No loss of photosynthetic enhancement. Plant, Cell & Environment 16(7), 797-807. https://doi.org/10.1111/j.1365-3040.1993.tb00501.x
  36. Hebeisen, T., A. Luscher, S. Zanetti, B. Fischer, U. Hartwig, M. Frehner, G. Hendrey, and H. Blum, 1997: Growth response of trifolium repens l. And lolium perenne l. As monocultures and bi-species mixture to free air co2 enrichment and management. Global Change Biology 3(2), 149-160. https://doi.org/10.1046/j.1365-2486.1997.00073.x
  37. Herrick, J. and Thomas, R., 2001: No photosynthetic downregulation in sweetgum trees (liquidambar styraciflua l.) after three years of co2 enrichment at the duke forest face experiment. Plant, Cell & Environment 24(1), 53-64. https://doi.org/10.1046/j.1365-3040.2001.00652.x
  38. Hocking, P. and Meyer, C., 1991: Effects of co2 enrichment and nitrogen stress on growth, and partitioning of dry matter and nitrogen in wheat and maize. Functional Plant Biology 18(4), 339-356.
  39. Idso, S. B. and Kimball, B. A., 2001: Co2 enrichment of sour orange trees: 13 years and counting. Environmental and Experimental Botany 46(2), 147-153. https://doi.org/10.1016/S0098-8472(01)00093-4
  40. IPCC, Climate change 2013: The physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. United Kingdom and New York, NY, USA: Cambridge University Press, 2013.
  41. Irigoyen, J. J., Goicoechea, N., Antolin, M. C., Pascual, I., Sanchez-Diaz, M., Aguirreolea, J. and Morales, F., 2014: Growth, photosynthetic acclimation and yield quality in legumes under climate change simulations: An updated survey. Plant Science 226, 22-29. https://doi.org/10.1016/j.plantsci.2014.05.008
  42. Lee, J. C., Kim, D. H., Kim, G. N., Kim, P. G., Han, S. H., 2012: Long-term climate change research facility for trees: Co2-enrhiched open top chamber system. Korean Journal of Agricultural and Forest Meteorology 14(1), 19-27. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2012.14.1.019
  43. Jones, J. B., Jr.;, Wolf, B. and Mills, H. A., 1991: Plant analysis handbook. A practical sampling, preparation, analysis, and interpretation guide. Micro-Macro Publishing, Inc., 213pp.
  44. Kellomaki, S. and Wang, K.-Y., 1996: Photosynthetic responses to needle water potentials in scots pine after a four-year exposure to elevated co2 and temperature. Tree Physiology 16(9), 765-772. https://doi.org/10.1093/treephys/16.9.765
  45. Kemp, P. R. and Cunningham, G. L., 1981: Light, temperature and salinity effects on growth, leaf anatomy and photosyntesis of distichlis spicata (l.) greene. American Journal of Botany 68(4), 507-516. https://doi.org/10.2307/2443026
  46. Kubinova, L., 1991: Stomata and mesophyll characteristics of barley leaf as affected by light: Stereological analysis. Journal of Experimental Botany 42(8), 995-1001. https://doi.org/10.1093/jxb/42.8.995
  47. Kwon, B., Kim, H. S., Park, P. S. and Yi, M. J., 2014: Nutrient use traits (strategies) of carpinus cordata saplings growing under different forest stand conditions. Korean Journal of Agricultural and Forest Meteorology in press. (in Korean with English abstract).
  48. Leadley, P. W. and Drake, B. G., 1993: Open top chambers for exposing plant canopies to elevated co2 concentration and for measuring net gas exchange. $CO_{2}$ and biosphere Advances in Vegetation Science 14, 3-16.
  49. Leakey, A. D. B., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P. and Ort, D. R., 2009: Elevated co2 effects on plant carbon, nitrogen, and water relations: Six important lessons from face. Journal of Experimental Botany 60(10), 2859-2876. https://doi.org/10.1093/jxb/erp096
  50. Lewis, J. D., Tissue, D. T. and Strain, B. R., 1996: Seasonal response of photosynthesis to elevated co2 in loblolly pine (pinus taeda l.) over two growing seasons. Global Change Biology 2(2), 103-114. https://doi.org/10.1111/j.1365-2486.1996.tb00055.x
  51. Lichtenthaler, H., Buschmann, C., Doll, M., Fietz, H.-J., Bach, T., Kozel, U., Meier, D. and Rahmsdorf, U., 1981: Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynthesis research 2(2), 115-141. https://doi.org/10.1007/BF00028752
  52. Limin, Y., Mei, H., Guangsheng, Z. and Jiandong, L., 2007: The changes in water-use efficiency and stoma density of leymus chinensis along northeast china transect. Acta Ecologica Sinica 27(1), 16-23. https://doi.org/10.1016/S1872-2032(07)60006-7
  53. Lin, J., Jach, M. and Ceulemans, R., 2001: Stomatal density and needle anatomy of scots pine (pinus sylvestris) are affected by elevated co2. New Phytologist 150(3), 665-674. https://doi.org/10.1046/j.1469-8137.2001.00124.x
  54. Liu, M., Xu, Z., Guo, S., Tang, C., Liu, X. and Jao, X., 2014: Evaluation of leaf morphology, structure and biochemical substance of balloon flower (platycodon grandiflorum (jacq.) a. Dc.) plantlets in vitro under different light spectra. Scientia Horticulturae 174, 112-118. https://doi.org/10.1016/j.scienta.2014.05.006
  55. Luomala, E., Laitinen, K., Sutinen, S., Kellomaki, S. and Vapaavuori, E., 2005: Stomatal density, anatomy and nutrient concentrations of scots pine needles are affected by elevated co2 and temperature. Plant, Cell & Environment 28(6), 733-749. https://doi.org/10.1111/j.1365-3040.2005.01319.x
  56. McCarthy, H. R., Oren, R., Johnsen, K. H., Gallet- Budynek, A., Pritchard, S. G., Cook, C. W., LaDeau, S. L., Jackson, R. B. and Finzi, A. C., 2010: Re-assessment of plant carbon dynamics at the duke free-air co2 enrichment site: Interactions of atmospheric [co2] with nitrogen and water availability over stand development. New Phytologist 185(2), 514-528. https://doi.org/10.1111/j.1469-8137.2009.03078.x
  57. Medlyn, B., Badeck, F. W., De Pury, D., Barton, C., Broadmeadow, M., Ceulemans, R., De Angelis, P., Forstreuter, M., Jach, M. and Kellomaki, S., 1999: Effects of elevated [co2] on photosynthesis in european forest species: A meta-analysis of model parameters. Plant, Cell & Environment 22(12), 1475-1495. https://doi.org/10.1046/j.1365-3040.1999.00523.x
  58. Miglietta, F., Peressotti, A., Vaccari, F. P., Zaldei, A., DeAngelis, P. and Scarascia-Mugnozza, G., 2001: Freeair co2 enrichment (face) of a poplar plantation: The popface fumigation system. New Phytologist 150(2), 465-476. https://doi.org/10.1046/j.1469-8137.2001.00115.x
  59. Morison, J. I. L., 1998: Stomatal response to increased co2 concentration. Journal of Experimental Botany 49(Special Issue), 443-452. https://doi.org/10.1093/jxb/49.Special_Issue.443
  60. Norby, R. J., DeLucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P., King, J. S., Ledford, J., McCarthy, H. R., Moore, D. J. and Ceulemans, R., 2005: Forest response to elevated co2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America 102(50), 18052-18056. https://doi.org/10.1073/pnas.0509478102
  61. Norby, R. J., Wullschleger, S. D., Gunderson, C. A. and Nietch, C. T., 1995: Increased growth efficiency of quercus alba trees in a co2-enriched atmosphere. New Phytologist 131(1), 91-97. https://doi.org/10.1111/j.1469-8137.1995.tb03058.x
  62. Norby, R. J. and Zak, D. R., 2011: Ecological lessons from free-air co2 enrichment (face) experiments. Annual review of ecology, evolution, and systematics 42(1), 181. https://doi.org/10.1146/annurev-ecolsys-102209-144647
  63. Nowak, R. S., Ellsworth, D. S. and Smith, S. D., 2004: Functional responses of plants to elevated atmospheric co2-do photosynthetic and productivity data from face experiments support early predictions? New Phytologist 162(2), 253-280. https://doi.org/10.1111/j.1469-8137.2004.01033.x
  64. Ogaya, R., Llorens, L. and Penuelas, J., 2011: Density and length of stomatal and epidermal cells in" living fossil" trees grown under elevated co 2 and a polar light regime. Acta Oecologica 37(4), 381-385. https://doi.org/10.1016/j.actao.2011.04.010
  65. Oren, R., Ellsworth, D. S., Johnsen, K. H., Phillips, N., Ewers, B. E., Maier, C., Schafer, K. V., McCarthy, H., Hendrey, G. and McNulty, S. G., 2001: Soil fertility limits carbon sequestration by forest ecosystems in a co2-enriched atmosphere. Nature 411(6836), 469-472. https://doi.org/10.1038/35078064
  66. Palmroth, S., Katul, G. G., Maier, C. A., Ward, E., Manzoni, S. and Vico, G., 2013: On the complementary relationship between marginal nitrogen and water-use efficiencies among pinus taeda leaves grown under ambient and co2-enriched environments. Annals of Botany 111(3), 467-477. https://doi.org/10.1093/aob/mcs268
  67. Penuelas, J. and Matamala, R., 1990: Changes in n and s leaf content, stomatal density and specific leaf area of 14 plant species during the last three centuries of co2 increase. Journal of Experimental Botany 41(9), 1119-1124. https://doi.org/10.1093/jxb/41.9.1119
  68. Picon, C., Guehl, J. and Ferhi, A., 1996: Leaf gas exchange and carbon isotope composition responses to drought in a drought-avoiding (pinus pinaster) and a droughttolerant (quercus petraea) species under present and elevated atmospheric co2 concentrations. Plant, Cell & Environment 19(2), 182-190. https://doi.org/10.1111/j.1365-3040.1996.tb00239.x
  69. Poorter, H. and Navas, M. L., 2003: Plant growth and competition at elevated co2: On winners, losers and functional groups. New Phytologist 157(2), 175-198. https://doi.org/10.1046/j.1469-8137.2003.00680.x
  70. Radoglou, K. and Jarvis, P., 1990: Effects of co2 enrichment on four poplar clones. Ii. Leaf surface properties. Annals of Botany 65(6), 627-632. https://doi.org/10.1093/oxfordjournals.aob.a087979
  71. Reid, C. D., Maherali, H., Johnson, H. B., Smith, S. D., Wullschleger, S. D. and Jackson, R. B., 2003: On the relationship between stomatal characters and atmospheric co2. Geophysical Research Letters 30(19).
  72. Rey, A. and Jarvis, P., 1998: Long-term photosynthetic acclimation to increased atmospheric co2 concentration in young birch (betula pendula) trees. Tree Physiology 18(7), 441-450. https://doi.org/10.1093/treephys/18.7.441
  73. Rogers, A. and Ellsworth, D., 2002: Photosynthetic acclimation of pinus taeda (loblolly pine) to long-term growth in elevated pco2 (face). Plant, Cell & Environment 25(7), 851-858. https://doi.org/10.1046/j.1365-3040.2002.00868.x
  74. Samarakoon, A. and Gifford, R., 1996: Elevated co2 effects on water use and growth of maize in wet and drying soil. Functional Plant Biology 23(1), 53-62.
  75. Saxe, H., Ellsworth, D. S. and Heath, J., 1998: Tree and forest functioning in an enriched co2 atmosphere. New Phytologist 139(3), 395-436. https://doi.org/10.1046/j.1469-8137.1998.00221.x
  76. Scarascia-Mugnozza, G., Angelis, P. D., Matteucci, G. and Valentini, R., 1996: Long-term exposure to elevated [co2] in a natural quercus ilex l. Community: Net photosynthesis and photochemical efficiency of psii at different levels of water stress. Plant, Cell & Environment 19(6), 643-654. https://doi.org/10.1111/j.1365-3040.1996.tb00399.x
  77. Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D. and Singsaas, E. L., 2007: Fitting photosynthetic carbon dioxide response curves for c3 leaves. Plant, Cell & Environment 30(9), 1035-1040. https://doi.org/10.1111/j.1365-3040.2007.01710.x
  78. Son, Y., Kim, R. H., Lee, K.-H., Pyo, J. K., Kim, S. W., Hwang, J. S., Lee, S. J. and Park, H., 2014: Carbon Emission Factors Biomass Allometric Equations by Species in Korea. 14-08, Korea Forest Research Institute, 97pp.
  79. Stewart, J. D. and Hoddinott, J., 1993: Photosynthetic acclimation to elevated atmospheric carbon dioxide and uv irradiation in pinus banksiana. Physiologia Plantarum 88(3), 493-500. https://doi.org/10.1111/j.1399-3054.1993.tb01364.x
  80. Taylor, G., Ceulemans, R., Ferris, R., Gardner, S. and Shao, B., 2001: Increased leaf area expansion of hybrid poplar in elevated co2 from controlled environments to opentop chambers and to face. Environmental Pollution 115(3), 463-472. https://doi.org/10.1016/S0269-7491(01)00235-4
  81. Teskey, R., 1995: A field study of the effects of elevated co2 on carbon assimilation, stomatal conductance and leaf and branch growth of pinus taeda trees. Plant, Cell & Environment 18(5), 565-573. https://doi.org/10.1111/j.1365-3040.1995.tb00556.x
  82. Tezara, W., Mitchell, V., Driscoll, S. and Lawlor, D., 2002: Effects of water deficit and its interaction with co2 supply on the biochemistry and physiology of photosynthesis in sunflower. Journal of Experimental Botany 53(375), 1781-1791. https://doi.org/10.1093/jxb/erf021
  83. Thomas, J. F. and Harvey, C. N., 1983: Leaf anatomy of four species grown under continuous co2 enrichment. Botanical Gazette 144(3), 303-309. https://doi.org/10.1086/337377
  84. Tissue, D. T., Griffin, K. L. and Ball, J. T., 1999: Photosynthetic adjustment in field-grown ponderosa pine trees after six years of exposure to elevated co2. Tree Physiology 19(4-5), 221-228. https://doi.org/10.1093/treephys/19.4-5.221
  85. Tissue, D. T., Griffin, K. L., Turnbull, M. H. and Whitehead, D., 2001: Canopy position and needle age affect photosynthetic response in field-grown pinus radiata after five years of exposure to elevated carbon dioxide partial pressure. Tree Physiology 21(12-13), 915-923. https://doi.org/10.1093/treephys/21.12-13.915
  86. Turnbull, M., Tissue, D., Griffin, K., Rogers, G. and Whitehead, D., 1998: Photosynthetic acclimation to longterm exposure to elevated co2 concentration in pinus radiata d. Don. Is related to age of needles. Plant, Cell & Environment 21(10), 1019-1028. https://doi.org/10.1046/j.1365-3040.1998.00374.x
  87. Uddling, J. and Wallin, G., 2012: Interacting effects of elevated co2 and weather variability on photosynthesis of mature boreal norway spruce agree with biochemical model predictions. Tree Physiology 32(12), 1509-1521. https://doi.org/10.1093/treephys/tps086
  88. Urban, O., 2003: Physiological impacts of elevated co2 concentration ranging from molecular to whole plant responses. Photosynthetica 41(1), 9-20. https://doi.org/10.1023/A:1025891825050
  89. Wang, D., Heckathorn, S., Wang, X. and Philpott, S., 2012: A meta-analysis of plant physiological and growth responses to temperature and elevated co2. Oecologia 169(1), 1-13. https://doi.org/10.1007/s00442-011-2172-0
  90. Will, R. E. and Ceulemans, R., 1997: Effects of elevated co2 concentration on photosynthesis, respiration and carbohydrate status of coppice populus hybrids. Physiologia Plantarum 100(4), 933-939. https://doi.org/10.1111/j.1399-3054.1997.tb00020.x
  91. Woodward, F. I. and Kelly, C. K., 1995: The influence of co2 concentration on stomatal density. New Phytologist 131(3), 311-327. https://doi.org/10.1111/j.1469-8137.1995.tb03067.x
  92. Xu, Z. and Zhou, G., 2008: Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany 59(12), 3317-3325. https://doi.org/10.1093/jxb/ern185
  93. Zak, D. R., Holmes, W. E., Finzi, A. C., Norby, R. J. and Schlesinger, W. H., 2003: Soil nitrogen cycling under elevated co2: A synthesis of forest face experiments. Ecological applications 13(6), 1508-1514. https://doi.org/10.1890/03-5055
  94. Zak, D. R., Pregitzer, K. S., Curtis, P. S., Teeri, J. A., Fogel, R. and Randlett, D. L., 1993: Elevated atmospheric co2 and feedback between carbon and nitrogen cycles. Plant and Soil 151(1), 105-117. https://doi.org/10.1007/BF00010791
  95. Zhou, Y., Schaub, M., Shi, L., Guo, Z., Fan, A., Yan, C., Wang, X., Wang, C., Han, S.-J. and Li, M.-H., 2012: Non-linear response of stomata in pinus koraiensis to tree age and elevation. Trees 26(4), 1389-1396. https://doi.org/10.1007/s00468-012-0713-8
  96. Zotz, G., Pepin, S. and Korner, C., 2005: No down-regulation of leaf photosynthesis in mature forest trees after three years of exposure to elevated co2. Plant Biology 7(4), 369-374. https://doi.org/10.1055/s-2005-837635

Cited by

  1. Does the increase in ambient CO2 concentration elevate allergy risks posed by oak pollen? vol.62, pp.9, 2018, https://doi.org/10.1007/s00484-018-1558-7