DOI QR코드

DOI QR Code

Estimating Rainfall Interception Loss of Decomposed Floor in a Deciduous Forest Using Rainfall Simulation Experiments

인공강우실험에 의한 활엽수 부후낙엽층의 강우차단손실량 추정

  • Ahn, Byungkyu (Department of Forest Sciences, Seoul National University) ;
  • Choi, Hyungtae (Korea Forest Research Institute) ;
  • Lee, Qiwen (Department of Forest Sciences, Seoul National University) ;
  • Im, Sangjun (Department of Forest Sciences, Seoul National University)
  • Received : 2014.08.16
  • Accepted : 2014.09.29
  • Published : 2014.09.30

Abstract

Forest floor is one of most distinctive features of forest ecosystem, which provides plants and soil microbes with nutrients, and controls hydrologic condition within the floor by intercepting water during a rainfall event and evaporates back into the atmosphere. In this study rainfall interception loss by decomposed forest floor of a deciduous forest has been experimentally estimated using rainfall simulation experiments. Litter-decomposing fungi were incubated on deciduous forest floor samples for the experiment purposes. On a deciduous floor, a $4.22mm{\cdot}kg^{-1}{\cdot}m^2$ of rain was intercepted immediately before rain ceased. Minimum values of interception loss ranged from 1.62 to $2.41mm{\cdot}kg^{-1}{\cdot}m^2$, with an average of $1.87mm{\cdot}kg^{-1}{\cdot}m^2$. Mann-Whitney test showed that decomposing fungi on the forest floor influenced on rainfall interception capacity.

부후균에 의해 낙엽이 잘 분해되어 있는 부후낙엽층은 수목의 생장에 필요한 양분과 토양미생물의 활동에 필요한 에너지를 공급하고 강우를 차단하여 저류한다. 이 연구에서는 인공강우실험을 통해 부후낙엽층의 강우차단 및 저류기능을 평가하였다. 부후균을 활엽수 낙엽 시료에 인공배양하여 부후균의 균사를 발달시켜 실험에 이용하였다. 강우를 중단한 직후에 측정한 활엽수 부후낙엽의 최대 강우차단 손실량은 단위면적당 $4.22mm{\cdot}kg^{-1}{\cdot}m^2$로 조사되었으며, 강우를 중단하고 자연배수를 완료한 후에 측정한 최소 강우차단 손실량은 $1.62mm{\cdot}kg^{-1}{\cdot}m^2$에서 $2.41mm{\cdot}kg^{-1}{\cdot}m^2$의 범위를 가지며, 평균 $1.87mm{\cdot}kg^{-1}{\cdot}m^2$로 나타났다. Mann-Whitney 검정 결과, 낙엽층에 존재하는 부후균은 강우차단 및 증발 손실에 유의미한 영향을 미쳤다. 인공강우실험에 의하면 부후균은 낙엽을 분해하는 과정에서 균사를 넓게 발달시키고, 부후균의 발수기능에 의해 강우를 차단하고 일시적으로 저류하여 낙엽층에 의한 강우차단손실을 증가시키는 것으로 나타났다.

Keywords

References

  1. Cha, J. Y., S. Im, S. Y. Lee, and S. Ohga, 2011: Diversity of fungal species isolated from litter-mycelial mats in the litter layer of a Korean deciduous forest. Journal of the Faculty of Agriculture, Kyushu University 56(2), 237-241.
  2. Cisneros-Dozal, L. M., S. E. Trumbore, and P. J. Hanson, 2007: Effect of moisture on leaf litter decomposition and its contribution to soil respiration in a temperate forest. Journal of Geophysical Research 112, G01013.
  3. Doerr, S. H., and A. D. Thomas, 2000: The role of soil moisture in controlling water repellency: new evidence from forest soils in Portugal. Journal of Hydrology 231- 232, 134-147. https://doi.org/10.1016/S0022-1694(00)00190-6
  4. DeBano, L. F., 2000: The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology 231-232, 195-206. https://doi.org/10.1016/S0022-1694(00)00194-3
  5. De Santo, A. V., B. Berg, F. A. Rutigliano, A. Alfani, and A. Floretto, 1993: Factors regulating early-stage decomposition of needle litters in five different coniferous forests. Soil Biology and Biochemistry 25(10), 1423-1433. https://doi.org/10.1016/0038-0717(93)90057-I
  6. Gerrits, A. M. J., H. H. G. Savenije, I. Hoffman, and L. Pfister, 2007: New technique to measure forest floor interception-an application in a beech forest in Luxembourg. Hydrology and Earth System Sciences 11, 695-701. https://doi.org/10.5194/hess-11-695-2007
  7. Helvey, J. D., and J. H. Patric, 1965: Canopy and litter interception of rainfall by hardwoods of eastern United States. Water Resources Research 1(2), 193-206. https://doi.org/10.1029/WR001i002p00193
  8. Herwitz, S. R., 1985: Interception storage capacities of tropical rainforest canopy trees. Journal of Hydrology 77, 237-252. https://doi.org/10.1016/0022-1694(85)90209-4
  9. Hunt, H. W., E. R. Ingham, D. C. Coleman, E. T. Elliott, and C. P. P. Reid, 1988: Nitrogen limitation of production and decomposition in prairie, mountain meadow, and pine forest. Ecology 69(4), 1009-1016. https://doi.org/10.2307/1941256
  10. Iserloh, I., W. Fister, M. Seeger, H. Willger, and J. B. Ries, 2012: A small portable rainfall simulator for reproducible experiments on soil erosion. Soil and Tillage Research 124, 131-137. https://doi.org/10.1016/j.still.2012.05.016
  11. Jansson, P. E., and B. Berg, 1985: Temporal variation of litter decomposition in relation to simulated soil climate: long-term decomposition in a Scots pine forest. Canadian Journal of Botany 63(6), 1008-1016. https://doi.org/10.1139/b85-136
  12. McClaugherty, C. A., J. Pastor, J. D. Aber, and J. M. Melillo, 1985: Forest litter decomposition in relation to soilnitrogen dynamics and litter quality. Ecology 66(1), 266-275. https://doi.org/10.2307/1941327
  13. Pitman, J. I., 1989: Rainfall interception by bracken litterrelationship between biomass, storage and drainage rate. Journal of Hydrology 111, 281-291. https://doi.org/10.1016/0022-1694(89)90265-5
  14. Putuhena, W. M., and I. Cordery, 1996: Estimation of interception capacity of the forest floor. Journal of Hydrology 180, 283-299. https://doi.org/10.1016/0022-1694(95)02883-8

Cited by

  1. Experimental Analysis of Water Retention Characteristics in the Litter of Different Deciduous Trees vol.19, pp.2, 2016, https://doi.org/10.13087/kosert.2016.19.2.83